In-School, Out-of-School, and Weekend Physical Activity Levels Vary Across Sociodemographic Subgroups of US Adolescents

in Journal of Physical Activity and Health
Restricted access

Background: In response to conflicting findings for activity levels across sociodemographic groups, this study examined differences in adolescents’ in-school, out-of-school, and weekend physical activity (PA) by sociodemographic subgroups using representative US data. Methods: Data were obtained from the Family Life, Activity, Sun, Health, and Eating study. Multiple regression models compared in-school, out-of-school, and weekend PA by gender and race/ethnicity, and examined potential modification of associations by grade (middle vs high school) and socioeconomic status (lower vs higher). Results: Final analytic sample was 1413 adolescents (Mean age = 14.5 y, 51.3% female, 64.5% white). Compared with whites, in-school PA was significantly higher among blacks and those classified as other race/ethnicity for middle school (69.8 and 71.0, respectively, vs 66.4 min/d), and among Hispanics for high school (52.7 vs 48.4 min/d). Hispanics’ (vs whites’) out-of-school PA was significantly lower for middle school (63.7 vs 66.6 min/d), but higher for high school (54.0 vs 51.8 min/d). In-school PA was significantly higher among adolescents of lower (vs higher) socioeconomic status among males and Hispanics (all Ps < .05). Conclusions: The relation of race/ethnicity with PA varies by grade and time of day/week. Socioeconomic status findings contradict previously reported findings. Efforts to increase PA based on sociodemographic disparities should consider potential interaction effects.

Johnson and Pettee Gabriel completed this work while at the School of Public Health in Austin, University of Texas Health Science Center at Houston, Austin, TX, USA. Johnson is now with the Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA, USA. Pettee Gabriel is now with the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, AL, USA. Ranjit and Springer are with the Department of Health Promotion and Behavioral Sciences, School of Public Health in Austin, University of Texas Health Science Center at Houston, Austin, TX, USA. Kohl is with the Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health in Austin, University of Texas Health Science Center at Houston, Austin, TX, USA; and the Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA.

Johnson (ashleigh.johnson@seattlechildrens.org) is corresponding author.
  • 1.

    US Department of Health and Human Services (USDHHS). Physical activity guidelines for Americans: be active, healthy, and happy! 2008. http://www.health.gov/paguidelines. Accessed January, 2018.

    • Search Google Scholar
    • Export Citation
  • 2.

    Hallal PC, Victora CG, Azevedo MR, Wells JC. Adolescent physical activity and health. Sports Med. 2006;36(12):10191030. PubMed ID: 17123326 doi:10.2165/00007256-200636120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Centers for Disease Control and Prevention. Youth risk behavior survey data. www.cdc.gov/yrbs. Accessed October 5, 2018.

  • 4.

    Bauman AE, Reis RS, Sallis JF, et al. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258271. PubMed ID: 22818938 doi:10.1016/S0140-6736(12)60735-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stalsberg R, Pedersen AV. Effects of socioeconomic status on the physical activity in adolescents: a systematic review of the evidence. Scand J Med Sci Sports. 2010;20(3):368383. PubMed ID: 20136763 doi:10.1111/j.1600-0838.2009.01047.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kohl HW III, Hobbs KE. Development of physical activity behaviors among children and adolescents. Pediatrics. 1998;101(3 pt 2):549554. PubMed ID: 12224661

  • 7.

    Sallis JF, Simons-Morton BG, Stone EJ, et al. Determinants of physical activity and interventions in youth. Med Sci Sports Exerc. 1992;24(6):248257. doi:10.1249/00005768-199206001-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ferreira I, Van Der Horst K, Wendel‐Vos W, Kremers S, Van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth–a review and update. Obes Rev. 2007;8(2):129154. PubMed ID: 17300279 doi:10.1111/j.1467-789X.2006.00264.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Van Der Horst K, Paw MJ, Twisk JW, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):12411250. PubMed ID: 17762356 doi:10.1249/mss.0b013e318059bf35

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Belton S, O’Brien W, Issartel J, McGrane B, Powell D. Where does the time go? patterns of physical activity in adolescent youth. J Sci Med Sport. 2016;19(11):921925. PubMed ID: 26897391 doi:10.1016/j.jsams.2016.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mota J, Santos P, Guerra S, Ribeiro JC, Duarte JA. Patterns of daily physical activity during school days in children and adolescents. Am J Hum Biol. 2003;15(4):547553. PubMed ID: 12820196 doi:10.1002/ajhb.10163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mcguire MT, Hannan PJ, Neumark-Sztainer D, Cossrow NHF, Story M. Parental correlates of physical activity in a racially/ethnically diverse adolescent sample. J Adolesc Health. 2002;30(4):253261. PubMed ID: 11927237 doi:10.1016/S1054-139X(01)00392-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Whitt-Glover MC, Taylor WC, Floyd MF, Yore MM, Yancey AK, Matthews CE. Disparities in physical activity and sedentary behaviors among US children and adolescents: prevalence, correlates, and intervention implications. J Public Health Policy. 2009;30(S1):S309S334. doi:10.1057/jphp.2008.46

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gordon-Larsen P, Nelson MC, Page P, Popkin BM. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics. 2006;117(2):417424. PubMed ID: 16452361 doi:10.1542/peds.2005-0058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    U.S. Department of Health and Human Services, National Cancer Institute (NCI). Family Life, Activity, Sun, Health and Eating (FLASHE) Survey Data. 2014. Bethesda, MD: National Cancer Institute (NCI).

    • Search Google Scholar
    • Export Citation
  • 16.

    Oh AY, Davis T, Dwyer LA, et al. Recruitment, enrollment, and response of parent–adolescent dyads in the FLASHE study. Am J Prev Med. 2017;52(6):849855. PubMed ID: 28526361 doi:10.1016/j.amepre.2016.11.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Saint-Maurice PF, Kim Y, Hibbing P, Oh AY, Perna FM, Welk GJ. Calibration and validation of the youth activity profile: the FLASHE study. Am J Prev Med. 2017;52(6):880887. PubMed ID: 28526365 doi:10.1016/j.amepre.2016.12.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    National Cancer Institute (NCI). Family Life, Activity, Sun, Health, and Eating (FLASHE) study. 2017. https://cancercontrol.cancer.gov/brp/hbrb/flashe.html. Accessed December 11, 2018.

    • Search Google Scholar
    • Export Citation
  • 19.

    Welk GJ, Saint-Maurice PF, Kim Y, et al. Understanding and interpreting error in physical activity data: insights from the FLASHE study. Am J Prev Med. 2017;52(6):836838. PubMed ID: 28526359 doi:10.1016/j.amepre.2017.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    US Department of Agriculture (USDA). Income eligibility guidelines. Federal Register. 2014;79(43):12467–12469.

  • 21.

    Mize TD. Best practices for estimating, interpreting, and presenting nonlinear interaction effects. Sociol Sci. 2019;6:81117. doi:10.15195/v6.a4

  • 22.

    Leeper TJ. Interpreting regression results using average marginal effects with R’s margins. Reference Manual. 2017;32:1–31.

  • 23.

    Berry WD, Golder M, Milton D. Improving tests of theories positing interaction. J Polit. 2012;74(3):653671. doi:10.1017/S0022381612000199

  • 24.

    Brambor T, Clark WR, Golder M. Understanding interaction models: improving empirical analyses. Polit Anal. 2006;14(1):6382. doi:10.1093/pan/mpi014

  • 25.

    Kim Y, Hibbing P, Saint-Maurice PF, et al. Surveillance of youth physical activity and sedentary behavior with wrist accelerometry. Am J Prev Med. 2017;52(6):872879. PubMed ID: 28526364 doi:10.1016/j.amepre.2017.01.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Thompson AM, Baxter-Jones AD, Mirwald RL, Bailey DA. Comparison of physical activity in male and female children: does maturation matter? Med Sci Sports Exerc. 2003;35(10):16841690. PubMed ID: 14523305 doi:10.1249/01.MSS.0000089244.44914.1F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Sherar LB, Esliger DW, Baxter-Jones AD, Tremblay MS. Age and gender differences in youth physical activity: does physical maturity matter? Med Sci Sports Exerc. 2007;39(5):830835. PubMed ID: 17468582 doi:10.1249/mss.0b013e3180335c3c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Trost SG, Pate RR, Sallis JF, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350355. PubMed ID: 11828247 doi:10.1097/00005768-200202000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stevens J, Murray DM, Catellier DJ, et al. Design of the trial of activity in adolescent girls (TAAG). Contemp Clin Trials. 2005;26(2):223233. PubMed ID: 15837442 doi:10.1016/j.cct.2004.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jamner MS, Spruijt-Metz D, Bassin S, Cooper DM. A controlled evaluation of a school-based intervention to promote physical activity among sedentary adolescent females: project FAB. J Adolesc Health. 2004;34(4):279289. doi:10.1016/S1054-139X(03)00272-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Robbins LB, Gretebeck KA, Kazanis AS, Pender NJ. Girls on the Move program to increase physical activity participation. Nurs Res. 2006;55(3):206216. PubMed ID: 16708045 doi:10.1097/00006199-200605000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Uijtdewilligen L, Nauta J, Singh AS, et al. Determinants of physical activity and sedentary behaviour in young people: a review and quality synthesis of prospective studies. Br J Sports Med. 2011;45(11):896905. PubMed ID: 21836173 doi:10.1136/bjsports-2011-090197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Van Dyke ME, Cheung PC, Franks P, Gazmararian JA. Socioeconomic and racial/ethnic disparities in physical activity environments in Georgia elementary schools. Am J Health Promot. 2018;32(2):453463. PubMed ID: 28682137 doi:10.1177/0890117117717016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Richmond TK, Hayward RA, Gahagan S, Field AE, Heisler M. Can school income and racial/ethnic composition explain the racial/ethnic disparity in adolescent physical activity participation? Pediatrics. 2006;117(6):21582166. PubMed ID: 16740860 doi:10.1542/peds.2005-1920

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Watson KB, Harris C, Carlson S, Dorn J, Fulton J. Disparities in adolescents’ residence in neighborhoods supportive of physical activity—United States, 2011–2012. MMWR Morb Mortal Wkly Rep. 2016;65(23):598601. PubMed ID: 27309671 doi:10.15585/mmwr.mm6523a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hyde ET, Omura JD, Fulton JE, Lee SM, Piercy KL, Carlson SA. Disparities in youth sports participation in the US, 2017–2018. Am J Prev Med. 2020;59(5):e207e210. PubMed ID: 32741540 doi:10.1016/j.amepre.2020.05.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Johnston LD, Delva J, O’Malley PM. Sports participation and physical education in American secondary schools: current levels and racial/ethnic and socioeconomic disparities. Am J Prev Med. 2007;33(4):S195S208. doi:10.1016/j.amepre.2007.07.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Farley TA, Meriwether RA, Baker ET, Rice JC, Webber LS. Where do the children play? the influence of playground equipment on physical activity of children in free play. J Phys Act Health. 2008;5(2):319331. PubMed ID: 18382040 doi:10.1123/jpah.5.2.319

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    US Department of EducationImproving Basic Programs Operated By Local Educational Agencies (Title I, Part A). 2015. Washington, DC: US Department of Education, Office of School Support and Accountability.

  • 40.

    Barroso CS, Kelder SH, Springer AE, et al. Senate bill 42: implementation and impact on physical activity in middle schools. J Adolesc Health. 2009;45(3):S82S90. doi:10.1016/j.jadohealth.2009.06.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kelder SH, Springer AE, Barroso CS, et al. Implementation of Texas Senate Bill 19 to increase physical activity in elementary schools. J Public Health Policy. 2009;30(S1):S221S247. doi:10.1057/jphp.2008.64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Babey SH, Hastert TA, Huang W, Brown ER. Sociodemographic, family, and environmental factors associated with active commuting to school among US adolescents. J Public Health Policy. 2009;30(1):S203S220. doi:10.1057/jphp.2008.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Martin SL, Lee SM, Lowry R. National prevalence and correlates of walking and bicycling to school. Am J Prev Med. 2007;33(2):98105. PubMed ID: 17673096 doi:10.1016/j.amepre.2007.04.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    McDonald NC. Critical factors for active transportation to school among low-income and minority students: evidence from the 2001 National Household Travel Survey. Am J Prev Med. 2008;34(4):341344. PubMed ID: 18374248 doi:10.1016/j.amepre.2008.01.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Stanley RM, Ridley K, Dollman J. Correlates of children’s time-specific physical activity: a review of the literature. Int J Behav Nutr Phys Act. 2012;9(1):50. doi:10.1186/1479-5868-9-50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    National Cancer Institute (NCI). FLASHE public use data files and supporting documentation. 2018. https://cancercontrol.cancer.gov/brp/hbrb/flashe-files.aspx. Accessed June 28, 2019.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1108 829 53
Full Text Views 33 11 0
PDF Downloads 25 11 0