Validity of GENEActiv Accelerometer Wear and Nonwear Time for Use in Infants

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Tummy time is recommended by the World Health Organization as part of its global movement guidelines for infant physical activity. To enable objective measurement of tummy time, accelerometer wear and nonwear time requires validation. The purpose of this study was to validate GENEActiv wear and nonwear time for use in infants. Methods: The analysis was conducted on accelerometer data from 32 healthy infants (4–25 wk) wearing a GENEActiv (right hip) while completing a positioning protocol (3 min each position). Direct observation (video) was compared with the accelerometer data. The accelerometer data were analyzed by receiver operating characteristic curves to identify optimal cut points for second-by-second wear and nonwear time. Cut points (accelerometer data) were tested against direct observation to determine performance. Statistical analysis was conducted using leave-one-out validation and Bland–Altman plots. Results: Mean temperature (0.941) and z-axis (0.889) had the greatest area under the receiver operating characteristic curve. Cut points were 25.6°C (temperature) and −0.812g (z-axis) and had high sensitivity (0.84, 95% confidence interval, 0.838–0.842) and specificity (0.948, 95% confidence interval, 0.944–0.948). Conclusions: Analyzing GENEActiv data using temperature (>25.6°C) and z-axis (greater than −0.812g) cut points can be used to determine wear time among infants for the purpose of measuring tummy time.

Hewitt, Okely, Stanley, and Cliff are with Early Start, Faculty of Social Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia. Batterham is with the School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW, Australia.

Hewitt (llh966@uowmail.edu.au) is corresponding author.
  • 1.

    Timmons BW, Leblanc AG, Carson V, et al. Systematic review of physical activity and health in the early years (aged 0–4 years). Appl Physiol Nutr and Metab. 2012;37(4):773792. doi:10.1139/h2012-070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    World Health Organisation. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. 2019; https://apps.who.int/iris/bitstream/handle/10665/311664/9789241550536-eng.pdf?sequence=1&isAllowed=y.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Australian 24-Hour Movement Guidelines for the Early Years (Birth to 5 years): an Integration of Physical Activity, Sedentary Behaviour, and Sleep. 2017; www.health.gov.au.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    UK physical activity guidelines. Guidance from the Chief Medical Office (CMO) on how much physical activity people should be doing, along with supporting documents. 2018; https://www.gov.uk/government/publications/uk-physical-activity-guidelines

    • Search Google Scholar
    • Export Citation
  • 5.

    South African 24-Hour Movement Guidelines For Birth To Five Years: an integration of physical activity, sitting behaviour, screen time and sleep. 2018; Accessed December 20, 2018. https://www.wits.ac.za/media/wits-university/research/coe-human/documents/EYMG 2-pager ONLINE.pdf

    • Search Google Scholar
    • Export Citation
  • 6.

    Hewitt L, Stanley RM, Cliff D, Okely AD. Objective measurement of tummy time in infants (0–6 months): a validation study. PLoS One. 2019;14(2):e0210977. PubMed ID: 30811395 doi:10.1371/journal.pone.0210977

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hewitt L, Stanley RM, Okely AD. Correlates of tummy time in infants aged 0–12 months old: a systematic review. Infant Behav Dev. 2017;49:310321. PubMed ID: 29096238 doi:10.1016/j.infbeh.2017.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hesketh KD, Downing KL, Campbell K, et al. Proportion of infants meeting the Australian 24-hour Movement Guidelines for the early years: data from the Melbourne InFANT Program. BMC Public Health. 2017;17:856. PubMed ID: 29219073 doi:10.1186/s12889-017-4856-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Jia Z, Zhang J, Trindade D, et al. Physical activity patterns and correlates of 9-month-old Chinese infants in the Macau population. Matern Child Health J. 2018;22(10):15261533. PubMed ID: 30094531 doi:10.1007/s10995-018-2614-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ricardo LIC, Da Silva ICM, Martins RC, et al. Protocol for objective measurement of infants’ Physical activity using accelerometry. Med Sci Sports Exerc. 2018;50(5):10841092. PubMed ID: 29206783 doi:10.1249/MSS.0000000000001512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Prioreschi A, Nappey T, Westgate K, et al. Development and feasibility of a wearable infant wrist band for the objective measurement of physical activity using accelerometery. Pilot Feasibility Stud. 2018;4(1). doi:10.1186/s40814-018-0256-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Van Cauwenberghe E, Gubbels J, De Bourdeaudhuij I, et al. Feasibility and validity of accelerometer measurements to assess physical activity in toddlers. Int J Behav Nutr Phys. 2011;8(1):67. doi:10.1186/1479-5868-8-67

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Stewart T, Narayanan A, Hedayatrad L, et al. A dual-accelerometer system for classifying physical activity in children and adults. Med Sci Sports Exerc. 2018;50(12):25952602. PubMed ID: 30048411 doi:10.1249/MSS.0000000000001717

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    van Hees VT, Sabia S, Jones SE, et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci Rep. 2018;8(1). doi:10.1038/s41598-018-31266-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Vanhelst J, Vidal F, Drumez E, et al. Comparison and validation of accelerometer wear time and non-wear time algorithms for assessing physical activity levels in children and adolescents. BMC Med Res Methodol. 2019;19(1). doi:10.1186/s12874-019-0712-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Johansson E, Larisch LM, Marcus C, Hagströmer M. Calibration and validation of a wrist- and hip-worn actigraph accelerometer in 4-year-old children. PLoS One. 2016;11(9):e0162436. PubMed ID: 27617962 doi:10.1371/journal.pone.0162436

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exer. 2011;43(2):357364. doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    van Hees VT, Renström F, Wright A, et al. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS One. 2011;6(7). doi:10.1371/journal.pone.0022922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zhou SM, Hill RA, Morgan K, et al. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity. BMJ Open. 2015;5(5), e007447. PubMed ID: 25968000 doi:10.1136/bmjopen-2014-007447

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Van Loo CMT, Okely AD, Batterham MJ, et al. Wrist accelerometer cut points for classifying sedentary behavior in children. Med Sci Sports Exerc. 2017;49(4):813822. PubMed ID: 27851669 doi:10.1249/MSS.0000000000001158

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Prioreschi A, Brage S, Westgate K, et al. Describing the diurnal relationships between objectively measured mother and infant physical activity. Int J Behav Nutr Phy. 2018;15(1). doi:10.1186/s12966-018-0692-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Patel MS, Benjamin EJ, Volpp KG, et al. Effect of a game-based intervention designed to enhance social incentives to increase physical activity among families: The BE FIT randomized clinical trial. JAMA Int Med. 2017;177(11):15861593. doi:10.1001/jamainternmed.2017.3458

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Phan TLT, Barnini N, Xie S, et al. Feasibility of using a commercial fitness tracker as an adjunct to family-based weight management treatment: Pilot randomized trial. JMIR mHealth and uHealth. 2018;6(11):e10523. PubMed ID: 30482743 doi:10.2196/10523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Triantafyllidis A, Filos D, Claes J, et al. Computerised decision support in physical activity interventions: a systematic literature review. Int J Med Info. 2018;111:716. doi:10.1016/j.ijmedinf.2017.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 181 181 73
Full Text Views 8 8 2
PDF Downloads 8 8 2