Comparison of High-Intensity Training Versus Moderate-Intensity Continuous Training on Cardiorespiratory Fitness and Body Fat Percentage in Persons With Overweight or Obesity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: High-intensity training is comprised of sprint interval training (SIT) and high-intensity interval training (HIIT). This study compared high-intensity training with moderate-intensity continuous training (MICT) on cardiorespiratory fitness (CRF) and body fat percentage for overweight or obese persons. Methods: A systematic search of randomized controlled trials using the health science databases occurred up to April, 2020. Twenty-six studies were included for complete analysis. A total of 784 participations were analyzed. The unstandardized mean difference for each outcome measurement was extracted from the studies and pooled with the random effects model. Results: MICT was significantly better at improving CRF compared with SIT (mean difference = −0.92; 95% confidence interval, −1.63 to −0.21; P = .01; I2 = 10%). Furthermore, there was no significant difference between MICT versus HIIT on CRF (mean difference = −0.52; 95% confidence interval, −1.18 to 0.13; P = .12; I2 = 23%). There was no significant difference in body fat percentage between MICT versus HIIT and MICT versus SIT. Conclusions: MICT was significantly better at improving CRF than SIT in overweight or obese persons.

Rugbeer is with the Department of Sport, Rehabilitation and Dental Science, Tshwane University of Technology, Pretoria, South Africa. Rugbeer, Constantinou, and Torres are with the Centre for Exercise Science and Sports Medicine, FIFA Medical Centre of Excellence, FIMS Collaborating Centre of Sports Medicine, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

Rugbeer (Rugbeern@tut.ac.za) is corresponding author.
  • 1.

    World Health Organization. Obesity and Overweight 2015. Geneva, Switzerland: World Health Organization; 2015.

  • 2.

    Hruby A, Hu FB. The epidemiology of obesity: a big picture. PharmacoEconomics. 2015;33(7):673689. PubMed ID: 25471927 doi:10.1007/s40273-014-0243-x

  • 3.

    The Lancet Public Health. Tackling obesity seriously: the time has come. Lancet Public Health. 2018;3(4):e153. doi:10.1016/S2468-2667(18)30053-7

  • 4.

    Pan A, Sun Q, Czernichow S, et al. . Bidirectional association between depression and obesity in middle-aged and older women. Int J Obes. 2012;36(4):595602. doi:10.1038/ijo.2011.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Pan A, Kawachi I, Luo N, et al. . Changes in body weight and health-related quality of life: 2 cohorts of US women. Am J Epidemiol. 2014;180(3):254262. PubMed ID: 24966215 doi:10.1093/aje/kwu136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hruby A, Manson JE, Qi L, et al. . Determinants and consequences of obesity. Am J Public Health. 2016;106(9):16561662. PubMed ID: 27459460 doi:10.2105/AJPH.2016.303326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ram A, Marcos L, Jones MD, et al. . The effect of high-intensity interval training and moderate-intensity continuous training on aerobic fitness and body composition in males with overweight or obesity: a randomized trial. Obes Med. 2020;17:100187. doi:10.1016/j.obmed.2020.100187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):12271234. PubMed ID: 24144531 doi:10.1136/bjsports-2013-092576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain? Exer Sport Sci Rev. 2008;36(2):5863. doi:10.1097/JES.0b013e318168ec1f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Elliott A, Bentley D, Aromataris E. Effectiveness of high-intensity interval training in patients with coronary heart disease: a systematic review protocol. JBI Database Syst Rev Implement Rep. 2013;11(8):1322. doi:10.11124/jbisrir-2013-974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wewege M, Van Den Berg R, Ward R, et al. . The effects of high‐intensity interval training vs. moderate‐intensity continuous training on body composition in overweight and obese adults: a systematic review and meta‐analysis. Obes Rev. 2017;18(6):635646. PubMed ID: 28401638 doi:10.1111/obr.12532

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45:14691481. PubMed ID: 26243014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Maillard F, Rousset S, Pereira B, et al. . High-intensity interval training is more effective than moderate-intensity continuous training in reducing abdominal fat mass in postmenopausal women with type 2 diabetes: a randomized crossover study. Diab Metabol. 2018;44(6):516517. doi:10.1016/j.diabet.2018.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Trapp EG, Chisholm DJ, Freund J, et al. . The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes. 2008;32(4):684691. doi:10.1038/sj.ijo.0803781

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Perry CG, Heigenhauser GJ, Bonen A, et al. . High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol, Nutr Metabol. 2008;33(6):11121123. doi:10.1139/H08-097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Martland R, Mondelli V, Gaughran F, et al. . Can high-intensity interval training improve physical and mental health outcomes? A meta-review of 33 systematic reviews across the lifespan. J Sports Sci. 2020;38(4):430469. PubMed ID: 31889469 doi:10.1080/02640414.2019.1706829

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Viana RB, Naves JPA, Coswig VS, et al. . Is interval training the magic bullet for fat loss? A systematic review and meta-analysis comparing moderate-intensity continuous training with high-intensity interval training (HIIT). Br J Sports Med. 2019;53(10):655664. PubMed ID: 30765340 doi:10.1136/bjsports-2018-099928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Rowley TW, Espinoza JL, Akers JD, et al. . Effects of run sprint interval training on healthy, inactive, overweight/obese women: a pilot study. Facets. 2017;2(1):5367. doi:10.1139/facets-2016-0004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Keating SE, Johnson NA, Mielke GI, et al. . A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev. 2017;18(8):943964. PubMed ID: 28513103 doi:10.1111/obr.12536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Myers J, McAuley P, Lavie CJ, et al. . Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis. 2015;57(4):306314. PubMed ID: 25269064 doi:10.1016/j.pcad.2014.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sun S, Zhang H, Kong Z, et al. . Twelve weeks of low volume sprint interval training improves cardio-metabolic health outcomes in overweight females. J Sports Sci. 2019;37(11):12571264. PubMed ID: 30563431 doi:10.1080/02640414.2018.1554615

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Türk Y, Theel W, Kasteleyn MJ, et al. . High intensity training in obesity: a meta-analysis. Obes Sci Prac. 2017;3(3):258271. doi:10.1002/osp4.109

  • 23.

    Wen D, Utesch T, Wu J, et al. . Effects of different protocols of high intensity interval training for VO2max improvements in adults: a meta-analysis of randomised controlled trials. J Sci Med Sport. 2019;22(8):941947. PubMed ID: 30733142 doi:10.1016/j.jsams.2019.01.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sultana RN, Sabag A, Keating SE, et al. . The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: a systematic review and meta-analysis. Sports Med. 2019;49(11):16871721. PubMed ID: 31401727 doi:10.1007/s40279-019-01167-w

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Andreato L, Esteves J, Coimbra D, et al. . The influence of high‐intensity interval training on anthropometric variables of adults with overweight or obesity: a systematic review and network meta‐analysis. Obes Rev. 2019;20(1):142155. PubMed ID: 30450794 doi:10.1111/obr.12766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Campbell WW, Kraus WE, Powell KE, et al. . High-intensity interval training for cardiometabolic disease prevention. Med Sci Sports Exer. 2019;51(6):12201226. doi:10.1249/MSS.0000000000001934

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Su L, Fu J, Sun S, et al. . Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: a meta-analysis. PLoS One. 2019;14(1):e0210644. PubMed ID: 30689632 doi:10.1371/journal.pone.0210644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Liberati A, Altman DG, Tetzlaff J, et al. . The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1e34. PubMed ID: 19631507 doi:10.1016/j.jclinepi.2009.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Riebe MD, Ehrman JK, et al. ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia: Wolters Kluwer; 2018.

  • 30.

    Batacan RB, Duncan MJ, Dalbo VJ, et al. . Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med. 2017;51(6):494503. PubMed ID: 27797726 doi:10.1136/bjsports-2015-095841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Verhagen AP, de Vet HC, de Bie RA, et al. . The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):12351241. PubMed ID: 10086815 doi:10.1016/S0895-4356(98)00131-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Hannan AL, Hing W, Simas V, et al. . High-intensity interval training versus moderate-intensity continuous training within cardiac rehabilitation: a systematic review and meta-analysis. Open Access J Sports Med. 2018;9:1. PubMed ID: 29416382 doi:10.2147/OAJSM.S150596

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Bækkerud FH, Solberg F, Leinan IM, et al. . Comparison of three popular exercise modalities on VO2max in overweight and obese. Med Sci Sports Exerc. 2016;48(3):491498. doi:10.1249/MSS.0000000000000777

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Barry JC, Simtchouk S, Durrer C, et al. . Short-term exercise training reduces anti-inflammatory action of interleukin-10 in adults with obesity. Cytokine. 2018;111:460469.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bartlett DB, Shepherd SO, Wilson OJ, et al. . Neutrophil and monocyte bactericidal responses to 10 weeks of low-volume high-intensity interval or moderate-intensity continuous training in sedentary adults. Oxidat Med Cell Longevity. 2017;2017:8148742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Cheema BS, Davies TB, Stewart M, et al. . The feasibility and effectiveness of high-intensity boxing training versus moderate-intensity brisk walking in adults with abdominal obesity: a pilot study. BMC Sports Sci Med Rehab. 2015;7(1):3. doi:10.1186/2052-1847-7-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Cocks M, Shaw CS, Shepherd SO, et al. . Sprint interval and moderate‐intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men. J Physiol. 2016;594(8):23072321. PubMed ID: 25645978 doi:10.1113/jphysiol.2014.285254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Cooper JH, Collins BE, Adams DR, et al. . Limited effects of endurance or interval training on visceral adipose tissue and systemic inflammation in sedentary middle-aged men. J Obes. 2016;2016.

    • Search Google Scholar
    • Export Citation
  • 39.

    Eskelinen JJ, Heinonen I, Löyttyniemi E, et al. Muscle-specific glucose and free fatty acid uptake after sprint interval and moderate-intensity training in healthy middle-aged men. J Appl Physiol. 2015;118(9):11721180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Fisher G, Brown AW, Brown MMB, et al. . High intensity interval vs moderate intensity-training for improving cardiometabolic health in overweight or obese males: a randomized controlled trial. PLoS One. 2015;10:e0138853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Gerosa-Neto J, Panissa VLG, Monteiro PA, et al. . High- or moderate-intensity training promotes change in cardiorespiratory fitness, but not visceral fat, in obese men: a randomised trial of equal energy expenditure exercise. Respir Physiol Neurobiol. 2019;266:150155. PubMed ID: 31125701 doi:10.1016/j.resp.2019.05.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Higgins S, Fedewa MV, Hathaway ED, et al. . Sprint interval and moderate-intensity cycling training differentially affect adiposity and aerobic capacity in overweight young-adult women. Appl Physiol Nutr Metabol. 2016;41(11):11771183. doi:10.1139/apnm-2016-0240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hornbuckle LM, McKenzie MJ, Whitt-glover MC. Effects of high-intensity interval training on cardiometabolic risk in overweight and obese African-American women: a pilot study. Ethn Health. 2018;23(7):752766. PubMed ID: 28277015 doi:10.1080/13557858.2017.1294661

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Keating S, Machan E, O’Conner H, et al. . Endurance exercise but not high-intensity interval training improves abdominal fat distribution in overweight adults. J Sci Med Sport. 2013;16:e15. doi:10.1016/j.jsams.2013.10.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Kong Z, Sun S, Liu M, et al. . Short-term high-intensity interval training on body composition and blood glucose in overweight and obese young women. J Diab Res. 2016;2016:4073618.

    • Search Google Scholar
    • Export Citation
  • 46.

    Kong Z, Fan X, Sun S, et al. . Comparison of high-intensity interval training and moderate-to-vigorous continuous training for cardiometabolic health and exercise enjoyment in obese young women: a randomized controlled trial. PLoS One. 2016;11(7):e0158589. PubMed ID: 27368057 doi:10.1371/journal.pone.0158589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Lunt H, Draper N, Marshall HC, et al. . High intensity interval training in a real world setting: a randomized controlled feasibility study in overweight inactive adults, measuring change in maximal oxygen uptake. PLoS One. 2014;9:e83256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Nie J, Zhang H, Kong Z, et al. . Impact of high-intensity interval training and moderate-intensity continuous training on resting and postexercise cardiac troponin T concentration. Exp Physiol. 2018;103(3):370380. PubMed ID: 29247498 doi:10.1113/EP086767

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Rafiei H, Robinson E, Barry J, et al. . Short-term exercise training reduces glycaemic variability and lowers circulating endothelial microparticles in overweight and obese women at elevated risk of type 2 diabetes. Eur J Sport Sci. 2019;19(8):11401149. PubMed ID: 30776253 doi:10.1080/17461391.2019.1576772

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Robinson E, Durrer C, Simtchouk S, et al. . Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. J Appl Physiol. 2015;119(5):508516. PubMed ID: 26139217 doi:10.1152/japplphysiol.00334.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Sawyer BJ, Tucker WJ, Bhammar DM, et al. . Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol. 2016;121(1):279288. PubMed ID: 27255523 doi:10.1152/japplphysiol.00024.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Shepherd SO, Cocks M, Tipton KD, et al. Low-volume high-intensity interval training in a gym setting improves cardio-metabolic and psychological health. PLoS One. 2015;10(9):e0139056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Skleryk J, Karagounis L, Hawley J, et al. . Two weeks of reduced‐volume sprint interval or traditional exercise training does not improve metabolic functioning in sedentary obese men. Diab Obes Metabol. 2013;15(12):11461153. doi:10.1111/dom.12150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Umamaheswari K, Dhanalakshmi Y, Karthik S, et al. . Effect of exercise intensity on body composition in overweight and obese individuals. Indian J Phys Pharmacol. 2017;61:5864.

    • Search Google Scholar
    • Export Citation
  • 55.

    Vella CA, Taylor K, Drummer D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur J Sport Sci. 2017;17(9):12031211. PubMed ID: 28792851 doi:10.1080/17461391.2017.1359679

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Zhang H, Tong TK, Qiu W, et al. . Comparable effects of high-intensity interval training and prolonged continuous exercise training on abdominal visceral fat reduction in obese young women. J Diab Res. 2017;2017:5071740.

    • Search Google Scholar
    • Export Citation
  • 57.

    Lyons K, Radburn C, Orr R, et al. . A profile of injuries sustained by law enforcement officers: a critical review. Int J Environ Res Public Health. 2017;14(2):142. doi:10.3390/ijerph14020142

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Kennelly J. Methodological approach to assessing the evidence. Reducing Racial/Ethnic Disparities in Reproductive and Perinatal Outcomes. Boston, MA: Springer; 2011:719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. Oxford, UK: The Cochrane Collaboration Confidence intervals; 2011.

    • Search Google Scholar
    • Export Citation
  • 60.

    Kodama S, Saito K, Tanaka S, et al. . Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):20242035. PubMed ID: 19454641 doi:10.1001/jama.2009.681

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Morici G, Gruttad’Auria CI, Baiamonte P, et al. . Endurance training: is it bad for you? Breathe. 2016;12(2):140147. doi:10.1183/20734735.007016

  • 62.

    Williams CJ, Gurd BJ, Bonafiglia JT, et al. . A multi-center comparison of VO2peak trainability between interval training and moderate intensity continuous training. Front Physiol. 2019;10:19.

    • Search Google Scholar
    • Export Citation
  • 63.

    Cercato C, Fonseca FA. Cardiovascular risk and obesity. Diabetol Metabol Synd. 2019;11(1):74. doi:10.1186/s13098-019-0468-0

  • 64.

    Macpherson RE, Hazell TJ, Olver TD, et al. . Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exer. 2011;43(1):115122. doi:10.1249/MSS.0b013e3181e5eacd

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Hazell TJ, Hamilton CD, Olver TD, et al. . Running sprint interval training induces fat loss in women. Appl Physiol Nutr Metabol. 2014;39(8):944950. doi:10.1139/apnm-2013-0503

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Henriksson H, Henriksson P, Tynelius P, et al. . Cardiorespiratory fitness, muscular strength, and obesity in adolescence and later chronic disability due to cardiovascular disease: a cohort study of 1 million men. Eur Heart J. 2020;41(15):15031510. PubMed ID: 31710669 doi:10.1093/eurheartj/ehz774

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1143 1143 247
Full Text Views 28 28 2
PDF Downloads 20 20 2