Regular Voluntary Running Inhibits Androgen-Independent Prostate Cancer Growth in Mice

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $119.00

1 year online subscription

USD  $159.00

Student 2 year online subscription

USD  $227.00

2 year online subscription

USD  $302.00

Introduction: Benefits of regular physical exercise were demonstrated as preventive and coadjuvant nonpharmacological anticancer therapy. However, the role of exercise in modulating prostate cancer behavior has yet to be established. Methods: Prostate tumors were induced in C57BL/6 male mice (n = 28) by subcutaneous inoculation of a suspension of murine androgen-independent RM1 cells (1.5 × 105 cells/500 μL phosphate-buffered saline) in the dorsal region. Mice were randomly allocated into 2 study groups: sedentary tumor-induced (n = 14) and exercised tumor-induced (n = 14). Exercise consisted of voluntary running in wheeled cages. Mice (n = 7 per group) were sacrificed either 14 or 28 days after cell inoculation to evaluate tumor weight and percentage of area occupied by immunohistochemistry stained cells for Ki-67 and TdT-mediated dUTP-biotin nick end labeling, used as surrogate markers of cell proliferation and apoptosis, respectively. Results: Compared with sedentary tumor-induced mice, the tumors developed by exercised tumor-induced mice were significantly smaller at 14 days (0.17 [0.12] g vs 0.48 [0.24] g, P < .05) and at 28 days (0.92 [0.73] g vs 2.09 [1.31] g, P < .05), with smaller Ki-67 and greater TdT-mediated dUTP-biotin nick end-labeling stained areas (P < .05). Conclusion: These results suggest that regular voluntary running inhibits prostate cancer cell growth by reducing cell proliferation and enhancing apoptosis.

Esteves and Silva contributed equally to this work. Esteves, Silva, and Duarte are with the Laboratory of Biochemistry and Experimental Morphology, CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal. Esteves is also with the Department of Physical Medicine and Rehabilitation, Hospital-Escola, Fernando Pessoa University, Porto, Portugal. Pereira, Morais, Costa, and Monteiro are with the Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal. Moreira is with the Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Porto, Portugal. Duarte is also with the Instituto Universitário de Ciências da Saúde, Gandra, Portugal.

Esteves (ftmarioesteves@gmail.com) is corresponding author.
  • 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394424. PubMed ID: 30207593 doi:10.3322/caac.21492

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Teoh JYC, Hirai HW, Ho JMW, Chan FCH, Tsoi KKF, Ng CF. Global incidence of prostate cancer in developing and developed countries with changing age structures. PLoS One. 2019;14(10):e0221775. PubMed ID: 31647819 doi:10.1371/journal.pone.0221775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Carioli G, Bertuccio P, Boffetta P, et al. . European cancer mortality predictions for the year 2020 with a focus on prostate cancer. Ann Oncol. 2020;31(5):650658. PubMed ID: 32321669 doi:10.1016/j.annonc.2020.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer. 2001;1(1):3445. PubMed ID: 11900250 doi:10.1038/35094009

  • 5.

    Heidenreich A, Bastian PJ, Bellmunt J, et al. . EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65(2):467479. PubMed ID: 24321502 doi:10.1016/j.eururo.2013.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003;169(2):517523. PubMed ID: 12544300 doi:10.1016/S0022-5347(05)63946-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Taylor RA, Farrelly SG, Clark AK, Watt MJ. Early intervention exercise training does not delay prostate cancer progression in Pten(-/-) mice. Prostate. 2020;80(11):906914. PubMed ID: 32519789 doi:10.1002/pros.24024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Schmitz KH, Courneya KS, Matthews C, et al. . American college of sports medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):14091426. PubMed ID: 20559064 doi:10.1249/MSS.0b013e3181e0c112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kenfield SA, Stampfer MJ, Giovannucci E, Chan JM. Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study. J Clin Oncol. 2011;29(6):726732. PubMed ID: 21205749 doi:10.1200/JCO.2010.31.5226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Richman EL, Kenfield SA, Stampfer MJ, Paciorek A, Carroll PR, Chan JM. Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research endeavor. Cancer Res. 2011;71(11):38893895. PubMed ID: 21610110 doi:10.1158/0008-5472.CAN-10-3932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Betof AS, Dewhirst MW, Jones LW. Effects and potential mechanisms of exercise training on cancer progression: a translational perspective. Brain Behav Immun. 2013;30:S75S87. doi:10.1016/j.bbi.2012.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Zheng X, Cui XX, Huang MT, et al. . Inhibitory effect of voluntary running wheel exercise on the growth of human pancreatic Panc-1 and prostate PC-3 xenograft tumors in immunodeficient mice. Oncol Rep. 2008;19(6):15831588. PubMed ID: 18497969 doi:10.3892/or.19.6.1583

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Opoku-Acheampong AB, Baumfalk DR, Horn AG, et al. . Prostate cancer cell growth characteristics in serum and prostate-conditioned media from moderate-intensity exercise-trained healthy and tumor-bearing rats. Am J Cancer Res. 2019;9(4):650667. PubMed ID: 31105994

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hojman P, Gehl J, Christensen JF, Pedersen BK. Molecular mechanisms linking exercise to cancer prevention and treatment. Cell Metab. 2018;27(1):1021. PubMed ID: 29056514 doi:10.1016/j.cmet.2017.09.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Eschke RK, Lampit A, Schenk A, et al. . Impact of physical exercise on growth and progression of cancer in rodents-a systematic review and meta-analysis. Front Oncol. 2019;9:35. PubMed ID: 30805305 doi:10.3389/fonc.2019.00035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8(3):205211. PubMed ID: 18235448 doi:10.1038/nrc2325

  • 17.

    Bourke L, Smith D, Steed L, et al. . Exercise for men with prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;69(4):693703. PubMed ID: 26632144 doi:10.1016/j.eururo.2015.10.047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gueritat J, Lefeuvre-Orfila L, Vincent S, et al. . Exercise training combined with antioxidant supplementation prevents the antiproliferative activity of their single treatment in prostate cancer through inhibition of redox adaptation. Free Radic Biol Med. 2014;77:95105. PubMed ID: 25236740 doi:10.1016/j.freeradbiomed.2014.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    McCullough DJ, Nguyen LM, Siemann DW, Behnke BJ. Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model. J Appl Physiol. 2013;115(12):18461854. doi:10.1152/japplphysiol.00949.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jones LW, Antonelli J, Masko EM, et al. . Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer. J Appl Physiol. 2012;113(2):263272. doi:10.1152/japplphysiol.01575.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pedersen L, Christensen JF, Hojman P. Effects of exercise on tumor physiology and metabolism. Cancer J. 2015;21(2):111116. PubMed ID: 25815851 doi:10.1097/PPO.0000000000000096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ribeiro AM, Andrade S, Pinho F, et al. . Prostate cancer cell proliferation and angiogenesis in different obese mice models. Int J Exp Pathol. 2010;91(4):374386. PubMed ID: 20666851 doi:10.1111/j.1365-2613.2010.00726.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pereira SS, Pereira R, Santos AP, et al. . Higher IL-6 peri-tumoural expression is associated with gastro-intestinal neuroendocrine tumour progression. Pathology. 2019;51(6):593599. PubMed ID: 31466863 doi:10.1016/j.pathol.2019.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Esser KA, Harpole CE, Prins GS, Diamond AM. Physical activity reduces prostate carcinogenesis in a transgenic model. Prostate. 2009;69(13):13721377. PubMed ID: 19489028 doi:10.1002/pros.20987

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Smitherman AB, Gregory CW, Mohler JL. Apoptosis levels increase after castration in the CWR22 human prostate cancer xenograft. Prostate. 2003;57(1):2431. PubMed ID: 12886520 doi:10.1002/pros.10271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Logue SE, Martin SJ. Caspase activation cascades in apoptosis. Biochem Soc Trans. 2008;36(1):19. PubMed ID: 18208375 doi:10.1042/BST0360001

  • 27.

    O’Neill AJ, Boran SA, O’Keane C, et al. . Caspase 3 expression in benign prostatic hyperplasia and prostate carcinoma. Prostate. 2001;47(3):183188. PubMed ID: 11351347 doi:10.1002/pros.1061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    D’Andrea S, Spaggiari G, Barbonetti A, Santi D. Endogenous transient doping: physical exercise acutely increases testosterone levels-results from a meta-analysis. J Endocrinol Invest. 2020;43(10):13491371. PubMed ID: 32297287 doi:10.1007/s40618-020-01251-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hackney AC. Endurance exercise training and reproductive endocrine dysfunction in men: alterations in the hypothalamic-pituitary-testicular axis. Curr Pharm Des. 2001;7(4):261273. PubMed ID: 11254889 doi:10.2174/1381612013398103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    De Bono JP, Adlam D, Paterson DJ, Channon KM. Novel quantitative phenotypes of exercise training in mouse models. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R926R934. PubMed ID: 16339385 doi:10.1152/ajpregu.00694.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Allen DL, Harrison BC, Maass A, Bell ML, Byrnes WC, Leinwand LA. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse. J Appl Physiol. 2001;90(5):19001908. doi:10.1152/jappl.2001.90.5.1900

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ. Running enhances spatial pattern separation in mice. Proc Natl Acad Sci U S A. 2010;107(5):23672372. PubMed ID: 20133882 doi:10.1073/pnas.0911725107

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Campbell KL, Winters-Stone KM, Wiskemann J, et al. . Exercise guidelines for cancer survivors: consensus statement from international multidisciplinary roundtable. Med Sci Sports Exerc. 2019;51(11):23752390. PubMed ID: 31626055 doi:10.1249/MSS.0000000000002116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hojman P. Exercise protects from cancer through regulation of immune function and inflammation. Biochem Soc Trans. 2017;45(4):905911. PubMed ID: 28673937 doi:10.1042/BST20160466

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. Biomed Res Int. 2015;2015:538019. doi:10.1155/2015/538019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92(18):14721489. PubMed ID: 10995803 doi:10.1093/jnci/92.18.1472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Lubik AA, Gunter JH, Hollier BG, et al. . IGF2 increases de novo steroidogenesis in prostate cancer cells. Endocr Relat Cancer. 2013;20(2):173186. PubMed ID: 23319492 doi:10.1530/ERC-12-0250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8(12):915928. PubMed ID: 19029956 doi:10.1038/nrc2536

  • 39.

    Ngo TH, Barnard RJ, Leung PS, Cohen P, Aronson WJ. Insulin-like growth factor I (IGF-I) and IGF binding protein-1 modulate prostate cancer cell growth and apoptosis: possible mediators for the effects of diet and exercise on cancer cell survival. Endocrinology. 2003;144(6):23192324. PubMed ID: 12746292 doi:10.1210/en.2003-221028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Betof AS, Lascola CD, Weitzel D, et al. . Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J Natl Cancer Inst. 2015;107(5). doi:10.1093/jnci/djv040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Morrell MBG, Alvarez-Florez C, Zhang A, et al. . Vascular modulation through exercise improves chemotherapy efficacy in Ewing sarcoma. Pediatr Blood Cancer. 2019;66(9):e27835. PubMed ID: 31136074 doi:10.1002/pbc.27835

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Schadler KL, Thomas NJ, Galie PA, et al. . Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy. Oncotarget. 2016;7(40):6542965440. PubMed ID: 27589843 doi:10.18632/oncotarget.11748

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4(4):292319. PubMed ID: 29606314 doi:10.1016/j.trecan.2018.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    McCullough DJ, Stabley JN, Siemann DW, Behnke BJ. Modulation of blood flow, hypoxia, and vascular function in orthotopic prostate tumors during exercise. J Natl Cancer Inst. 2014;106(4):dju036. doi:10.1093/jnci/dju036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    McGee MC, Hamner JB, Williams RF, et al. . Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 2010;76(5):15371545. PubMed ID: 20338480 doi:10.1016/j.ijrobp.2009.12.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Missiaen R, Mazzone M, Bergers G. The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Semin Cancer Biol. 2018;52(2):107116. PubMed ID: 29935312 doi:10.1016/j.semcancer.2018.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 454 454 124
Full Text Views 4 4 1
PDF Downloads 5 5 2