Exercise Training and Neuromuscular Parameters in Patients With Type 1 Diabetes: Systematic Review and Meta-Analysis

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $119.00

1 year online subscription

USD  $159.00

Student 2 year online subscription

USD  $227.00

2 year online subscription

USD  $302.00

Background: The present study aimed to systematically review the literature on the effects of physical training on neuromuscular parameters in patients with type 1 diabetes mellitus (T1DM). Methods: The PubMed, Scopus, EMBASE, and COCHRANE databases were accessed in September 2020. Clinical trials that evaluated the effects of physical training on neuromuscular parameters (maximum strength, resistance strength, muscle power, muscle quality, and muscle thickness) of patients with T1DM compared with a control group were considered eligible. The results were presented as the standardized mean difference with 95% confidence intervals. Effect size (ES) calculations were performed using the fixed effect method, with α = .05. Results: Combined training increased the maximum strength levels in individuals with T1DM to a lesser extent than in healthy individuals (ES: 0.363; P = .038). Strength training increased the maximum strength (ES: 1.067; P < .001), as well as combined training (ES: 0.943; P < .001); both compared with aerobic training in patients with T1DM. Strength training increased the maximum strength in a similar magnitude to combined training in patients with T1DM (ES: −0.114; P = .624). Conclusion: Both combined training and strength training represent effective strategies for improving the maximum strength in individuals with T1DM.

Flores, Reichert, Kruel, and Costa are with the School of Physical Education, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. Farinha is with the Brazilian Company of Hospital Services, School Hospital at the Federal University of Pelotas, Pelotas, Brazil.

Flores (eduborgesflores1992@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 254 KB)
  • 1.

    Cho NH, Shaw JE, Karuranga S, et al. . IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271281. PubMed ID: 29496507 doi:10.1016/j.diabres.2018.02.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Matthew C, Riddle M. Standards of medical care in diabetes 2019. Am Diabetes Assoc. 2019;42:204.

  • 3.

    Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 2018;6(2):122129. PubMed ID: 29199115 doi:10.1016/S2213-8587(17)30362-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Centers for Disease Control and Prevention C. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States. Atlanta, GA: Centers for Disease Control and Prevention; 2017. US Dep Heal Hum Serv. 2017;(Cdc):2009–2012.

    • Search Google Scholar
    • Export Citation
  • 5.

    Tokarz VL, MacDonald PE, Klip A. The cell biology of systemic insulin function. J Cell Biol. 2018;217(7):22732289. doi:10.1083/jcb.201802095

  • 6.

    Saberzadeh-Ardestani B, Karamzadeh R, Basiri M, et al. . Type 1 diabetes mellitus: cellular and molecular pathophysiology at a glance. Cell J. 2018;20(3):294301.

    • Search Google Scholar
    • Export Citation
  • 7.

    Galassetti P, Riddell MC. Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus. Compr Physiol. 2013;3(3):13091336. PubMed ID: 23897688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Krause MP, Riddell MC, Hawke TJ. Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes. 2011;12(4, pt 1):345364. doi:10.1111/j.1399-5448.2010.00699.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Orlando G, Balducci S, Bazzucchi I, Pugliese G, Sacchetti M. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability. Acta Diabetol. 2017;54(6):543550. PubMed ID: 28285381 doi:10.1007/s00592-017-0979-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Monaco CMF, Gingrich MA, Hawke TJ. Considering type 1 diabetes as a form of accelerated muscle. Aging. 47;2019.

  • 11.

    Monaco CMF, Hughes MC, Ramos SV, et al. . Altered mitochondrial bioenergetics and ultrastructure in the skeletal muscle of young adults with type 1 diabetes. Diabetologia. 2018;61(6):14111423. PubMed ID: 29666899 doi:10.1007/s00125-018-4602-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Li R, Xia J, Zhang X, et al. . Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sport Exerc. 2018;50(3):458467. doi:10.1249/MSS.0000000000001448

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Maratova K, Soucek O, Matyskova J, et al. . Muscle functions and bone strength are impaired in adolescents with type 1 diabetes. Bone. 2018;106:2227. PubMed ID: 29017892 doi:10.1016/j.bone.2017.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Vinik AI, Nevoret ML, Casellini C, Parson H. Diabetic neuropathy. Endocrinol Metab Clin North Am. 2013;42(4):747787. PubMed ID: 24286949 doi:10.1016/j.ecl.2013.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Balducci S, Sacchetti M, Orlando G, et al. . Correlates of muscle strength in diabetes. The study on the assessment of determinants of muscle and bone strength abnormalities in diabetes (SAMBA). Nutr Metab Cardiovasc Dis. 2014;24(1):1826. PubMed ID: 24095149 doi:10.1016/j.numecd.2013.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Alway SE. Mitochondrial dysfunction: linking Type 1 diabetes and sarcopenia. Exerc Sport Sci Rev. 2019;47(2):63. PubMed ID: 30882453 doi:10.1249/JES.0000000000000186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kennedy A, Nirantharakumar K, Chimen M, et al. . Does exercise improve glycaemic control in Type 1 diabetes? A systematic review and meta-analysis. PLoS One. 2013;8(3):e58861. PubMed ID: 23554942 doi:10.1371/journal.pone.0058861

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Yardley JE, Hay J, Abou-Setta AM, Marks SD, McGavock J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res Clin Pract. 2014;106(3):393400. PubMed ID: 25451913 doi:10.1016/j.diabres.2014.09.038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wu N, Bredin S, Guan Y, et al. . Cardiovascular health benefits of exercise training in persons living with type 1 diabetes: a systematic review and meta-analysis. J Clin Med. 2019;8(2):253. doi:10.3390/jcm8020253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jewiss D, Ostman C, King N, Smart NA. Clinical outcomes to exercise training in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2018;139:380391. doi:10.1016/j.diabres.2017.11.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. [updated March 2011]. The Cochrane Collaboration. 2011. www.handbook.cochrane.org. Assessed June 30, 2019.

    • Search Google Scholar
    • Export Citation
  • 22.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Reprinted from Annals of Internal Medicine). Phys Ther. 2009;89(9):873880. PubMed ID: 19723669 doi:10.1093/ptj/89.9.873

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Smart NA, Waldron M, Ismail H, et al. . Validation of a new tool for the assessment of study quality and reporting in exercise training studies: TESTEX. Int J Evid Based Healthc. 2015;13(1):918. PubMed ID: 25734864 doi:10.1097/XEB.0000000000000020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    D’hooge R, Hellinckx T, Van Laethem C, et al. . Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: a randomized controlled trial. Clin Rehabil. 2011;25(4):349359. PubMed ID: 21112904 doi:10.1177/0269215510386254

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mosher PE, Nash MS, Arlette C, et al. . Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus. Arch Phys Med Rehabil. 1998;79(6):652657. PubMed ID: 9630144 doi:10.1016/S0003-9993(98)90039-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Farinha JB, Ramis TR, Vieira AF, et al. . Glycemic, inflammatory and oxidative stress responses to different high-intensity training protocols in type 1 diabetes: a randomized clinical trial. J Diabetes Complications. 2018;32(12):11241132. PubMed ID: 30270019 doi:10.1016/j.jdiacomp.2018.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tunar M, Ozen S, Goksen D, Asar G, Bediz CS, Darcan S. The effects of pilates on metabolic control and physical performance in adolescents with type 1 diabetes mellitus. J Diabetes Complications. 2001;113(17-18):670675.

    • Search Google Scholar
    • Export Citation
  • 28.

    Lee AS, Johnson NA, McGill MJ, et al. . Effect of high-intensity interval training on glycemic control in adults with type 1 diabetes and overweight or obesity: a randomized controlled trial with partial crossover. Diabetes Care. 2020;(3):18.

    • Search Google Scholar
    • Export Citation
  • 29.

    Andersen H, Poulsen PL, Mogensen CE, Jakobsen J. Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications. 1996;45:440445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia. 1997;40(9):10621069. PubMed ID: 9300243 doi:10.1007/s001250050788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lukács A, Mayer K, Juhász E, Varga B, Fodor B, Barkai L. Reduced physical fitness in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2012;13(5):432437. doi:10.1111/j.1399-5448.2012.00848.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dongare-Bhor S, Lohiya N, Maheshwari A, et al. . Muscle and bone parameters in underprivileged Indian children and adolescents with T1DM. Bone. 2019;130:115074. PubMed ID: 31626994 doi:10.1016/j.bone.2019.115074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Romanello V, Sandri M. Mitochondrial quality control and muscle mass maintenance. Front Physiol. 2016;6(JAN):121.

  • 34.

    Donga E, Dekkers OM, Corssmit EPM, Romijn JA. Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. Eur J Endocrinol. 2015;173(1):101109. PubMed ID: 25899581 doi:10.1530/EJE-14-0911

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Cree-Green M, Newcomer BR, Brown MS, et al. . Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes. 2015;64(2):383392. PubMed ID: 25157095 doi:10.2337/db14-0765

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Durak EP, Jovanovic-Peterson L, Peterson CM. Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in Type I diabetic men. 1990;13(10):10391043.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Wiesinger GF, Pleiner J, Quittan M, et al. . Health related quality of life in patients with long-standing insulin dependent (Type 1) diabetes mellitus: benefits of regular physical training. Wien Klin Wochenschr. 2001;113(17-18):670675.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Larose J, Sigal RJ, Boulé NG, et al. . Effect of exercise training on physical fitness in type II diabetes mellitus. Med Sci Sports Exerc. 2010;42(8):14391447. PubMed ID: 20639722 doi:10.1249/MSS.0b013e3181d322dd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cauza E, Hanusch-Enserer U, Strasser B, et al. . The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil. 2005;86(8):15271533. PubMed ID: 16084803 doi:10.1016/j.apmr.2005.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care. 2005;28(6):12891294. PubMed ID: 15920041 doi:10.2337/diacare.28.6.1289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Yardley JE, Kenny GP, Perkins BA, et al. . Resistance versus aerobic exercise. Diabetes Care. 2013;36(3):537542. PubMed ID: 23172972 doi:10.2337/dc12-0963

  • 42.

    Gabriel DA, Kamen G, Frost G. Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sport Med. 2006;36(2):133149. doi:10.2165/00007256-200636020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162184. PubMed ID: 23395166 doi:10.1016/j.cmet.2012.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    McCarthy O, Moser O, Eckstein ML, et al. . Resistance isn’t futile: the physiological basis of the health effects of resistance exercise in individuals with type 1 diabetes. Front Endocrinol. 2019;10:115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Camera DM, Smiles WJ, Hawley JA. Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med. 2016;98:131143. PubMed ID: 26876650 doi:10.1016/j.freeradbiomed.2016.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Lambers S, van Laethem C, van Acker K, Calders P. Influence of combined exercise training on indices of obesity, diabetes and cardiovascular risk in type 2 diabetes patients. Clin Rehabil. 2008;22(6):483492. PubMed ID: 18511528 doi:10.1177/0269215508084582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Salem MA, Aboelasrar MA, Elbarbary NS, et al. . Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial. Diabetol Metab Syndr. 2010;2(1):111. doi:10.1186/1758-5996-2-47

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):28832896. PubMed ID: 27506998 doi:10.1113/JP272270

  • 49.

    Panissa VLG, Fukuda DH, de Oliveira FP, et al. . Maximum strength development and volume-load during concurrent high intensity intermittent training plus strength or strength-only training. J Sport Sci Med. 2018;17(4):623632.

    • Search Google Scholar
    • Export Citation
  • 50.

    Zambom-Ferraresi F, Cebollero P, Gorostiaga EM, et al. . Effects of combined resistance and endurance training versus resistance training alone on strength, exercise capacity, and quality of life in patients with COPD. J Cardiopulm Rehabil Prev. 2015;35(6):446453. PubMed ID: 26252342 doi:10.1097/HCR.0000000000000132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pan B, Ge L, Xun Y, et al. . Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. 2018;15(1):114. doi:10.1186/s12966-018-0703-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Johannsen NM, Swift DL, Lavie CJ, Earnest CP, Blair SN, Church TS. Combined aerobic and resistance training effects on glucose homeostasis, fitness, and other major health indices: a review of current guidelines. Sport Med. 2016;46(12):18091818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Kim Y, White T, Wijndaele K, et al. . The combination of cardiorespiratory fitness and muscle strength, and mortality risk. Eur J Epidemiol. 2018;33(10):953964. PubMed ID: 29594847 doi:10.1007/s10654-018-0384-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):9931017. PubMed ID: 23899560 doi:10.1152/physrev.00038.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Ørtenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. J Physiol. 2013;591(18):44054413. PubMed ID: 23652590 doi:10.1113/jphysiol.2013.251629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Izquierdo M, Cadore EL. Muscle power training in the institutionalized frail: a new approach to counteracting functional declines and very late-life disability. Curr Med Res Opin. 2014;30(7):13851390. PubMed ID: 24666003 doi:10.1185/03007995.2014.908175

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 520 520 77
Full Text Views 18 18 5
PDF Downloads 19 19 9