Effects of Physically Active Lessons on Movement Behaviors, Cognitive, and Academic Performance in Elementary Schoolchildren: ERGUER/Aracaju Project

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $119.00

1 year online subscription

USD  $159.00

Student 2 year online subscription

USD  $227.00

2 year online subscription

USD  $302.00

Background: To evaluate the effects of the introduction of physically active lessons on movement behaviors, cognitive, and academic performance in schoolchildren. Methods: This was a cluster-controlled trial. A total of 61 students from the second year of elementary school in a public school in Brazil made up 2 intervention classes (n = 34) with the introduction of physically active lessons and 2 control classes (n = 27). Sedentary behavior, physical activity, cognitive, and academic performance were evaluated in 3 moments, which were compared using models of generalized estimating equations. Results: The intervention was effective for reducing the standing time between the baseline and 3 months while increasing the walking time between baseline and 3 months and baseline and 9 months. There was a reduction in time in stationary activities and increased time in light physical activities between all moments. The intervention group increased their performance in the go/no go test, showing a smaller number of errors between the baseline and 3 months and baseline and 9 months, and a reduction in the test time between baseline and 3 months. No impact on students’ academic performance was observed. Conclusion: Physically active lessons improve movement behaviors and cognitive functions among elementary schoolchildren.

Barboza and E.C.M. Silva are with the Postgraduate Program in Physical Education, Federal University of Sergipe, Sao Cristovao, Brazil. Schmitz is with the Department of Education, Federal University of Sergipe, Sao Cristovao, Brazil. Tejada is with the Department of Psychology, Federal University of Sergipe, Sao Cristovao, Brazil. Oliveira is with the Postgraduate Program in Education, Tiradentes University (UNIT), Aracaju, Brazil. Sardinha is with the Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal. D.R. Silva is with the Department of Physical Education, Federal University of Sergipe, Sao Cristovao, Brazil.

Barboza (leite.lu@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Figure 1 (PDF 251 KB)
    • Supplementary Figure 2 (PDF 255 KB)
    • Supplementary Figure 3 (PDF 295 KB)
  • 1.

    LeBlanc AG, Katzmarzyk PT, Barreira TV, et al. ISCOLE Research Group. Correlates of total sedentary time and screen time in 9-11 year-old children around the world: the international study of childhood obesity, lifestyle and the environment. PLoS One. 2015;10(6):e0129622. PubMed ID: 26068231 doi:10.1371/journal.pone.0129622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Silva KS da, Bandeira A da S, Santos PC dos, Malheiros LEA, Sousa ACFC de, Filho VCB. Systematic review of childhood and adolescence sedentary behavior: analysis of the Report Card Brazil 2018. Braz. J. Kinanthrop. Hum. Perform. 2018;20(4):415445. doi:10.5007/1980-0037.2018v20n4p415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Stamatakis E, Ekelund U, Ding D, Hamer M, Bauman AE, Lee I-M. Is the time right for quantitative public health guidelines on sitting? A narrative review of sedentary behaviour research paradigms and findings. Br J Sports Med. 2019;53(6):377382. PubMed ID: 29891615 doi:10.1136/bjsports-2018-099131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    American Academy of Pediatrics. Committee on Public Education. American Academy of Pediatrics: children, adolescents, and television. Pediatrics. 2001;107(2):423426.

    • Search Google Scholar
    • Export Citation
  • 5.

    World Health Organization. Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age. Geneva: World Health Organization; 2019. http://www.ncbi.nlm.nih.gov/books/NBK541170/. Accessed November 30, 2019.

    • Search Google Scholar
    • Export Citation
  • 6.

    Carson V, Hunter S, Kuzik N, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl. Physiol. Nutr. Metab.. 2016;41(6 suppl)(3):S240S265. PubMed ID: 27306432 doi:10.1139/apnm-2015-0630

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    da Costa BGG, da Silva KS, George AM, de Assis MAA. Sedentary behavior during school-time: sociodemographic, weight status, physical education class, and school performance correlates in Brazilian schoolchildren. J Sci Med Sport. 2017;20(1):7074. PubMed ID: 27374756 doi:10.1016/j.jsams.2016.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Daly-Smith AJ, Zwolinsky S, McKenna J, Tomporowski PD, Defeyter MA, Manley A. Systematic review of acute physically active learning and classroom movement breaks on children’s physical activity, cognition, academic performance and classroom behaviour: understanding critical design features. BMJ Open Sport Exerc Med. 2018;4(1):e000341. PubMed ID: 29629186 doi:10.1136/bmjsem-2018-000341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Daly-Smith A, Quarmby T, Archbold VSJ, et al. Using a multi-stakeholder experience-based design process to co-develop the Creating Active Schools Framework. Int J Behav Nutr Phyl Activ. 2020;17(1):13. doi:10.1186/s12966-020-0917-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Martin R, Murtagh EM. Effect of active lessons on physical activity, academic, and health outcomes: a systematic review. Res Q Exerc Sport. 2017;88(2):149168. PubMed ID: 28328311 doi:10.1080/02701367.2017.1294244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Vazou S, Webster CA, Stewart G, et al. A systematic review and qualitative synthesis resulting in a typology of elementary classroom movement integration interventions. Sports Med—Open. 2020;6(1):1. PubMed ID: 31907711 doi:10.1186/s40798-019-0218-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Norris E, Dunsmuir S, Duke-Williams O, Stamatakis E, Shelton N. Physically active lessons improve lesson activity and on-task behavior: a cluster-randomized controlled trial of the “virtual traveller” intervention. Health Educ Behav. 2018;45(6):945956. PubMed ID: 29562763 doi:10.1177/1090198118762106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bedard C, St John L, Bremer E, Graham JD, Cairney J. A systematic review and meta-analysis on the effects of physically active classrooms on educational and enjoyment outcomes in school age children. PLoS One. 2019;14(6):e0218633. PubMed ID: 31237913 doi:10.1371/journal.pone.0218633

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Norris E, van Steen T, Direito A, Stamatakis E. Physically active lessons in schools and their impact on physical activity, educational, health and cognition outcomes: a systematic review and meta-analysis. Br J Sports Med. 2020;54(14):826838. PubMed ID: 31619381 doi:10.1136/bjsports-2018-100502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Watson A, Timperio A, Brown H, Best K, Hesketh KD. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):114. PubMed ID: 28841890 doi:10.1186/s12966-017-0569-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jones M, Defever E, Letsinger A, Steele J, Mackintosh KA. A mixed-studies systematic review and meta-analysis of school-based interventions to promote physical activity and/or reduce sedentary time in children. J Sport Health Sci. 2020;9(1):317. PubMed ID: 31921476 doi:10.1016/j.jshs.2019.06.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bellg AJ, Borrelli B, Resnick B, et al. Treatment Fidelity Workgroup of the NIH Behavior Change Consortium. Enhancing treatment fidelity in health behavior change studies: best practices and recommendations from the NIH Behavior Change Consortium. Health Psychol. 2004;23(5):443451. PubMed ID: 15367063 doi:10.1037/0278-6133.23.5.443

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Tremblay MS, Aubert S, Barnes JD, et al, SBRN Terminology Consensus Project Participants. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ridley K, Ridgers ND, Salmon J. Criterion validity of the activPALTM and ActiGraph for assessing children’s sitting and standing time in a school classroom setting. Int J Behav Nutr Phys Act. 2016;13:75. PubMed ID: 27387031 doi:10.1186/s12966-016-0402-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Aminian S, Hinckson EA. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9:119. PubMed ID: 23031188 doi:10.1186/1479-5868-9-119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):18211845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Piispala J, Starck T, Jansson-Verkasalo E, Kallio M. Decreased occipital alpha oscillation in children who stutter during a visual Go/Nogo task. Clin Neurophysiol. 2018;129(9):19711980. PubMed ID: 30029047 doi:10.1016/j.clinph.2018.06.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    King J, Markant J. Individual differences in selective attention and scanning dynamics influence children’s learning from relevant non-targets in a visual search task. J Exp Child Psychol. 2020;193:104797. PubMed ID: 31991262 doi:10.1016/j.jecp.2019.104797

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kaltner S, Jansen P. Mental rotation and motor performance in children with developmental dyslexia. Res Dev Disabil. 2014;35(3):741754. PubMed ID: 24268351 doi:10.1016/j.ridd.2013.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Stoet G. PsyToolkit: a software package for programming psychological experiments using Linux. Behav Res Methods. 2010;42(4):10961104. PubMed ID: 21139177 doi:10.3758/BRM.42.4.1096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Stoet G. PsyToolkit: A novel web-based method for running online questionnaires and reaction-time experiments [published online ahead of print November 14, 2016] Teach Psychol. doi:10.1177/0098628316677643

    • Search Google Scholar
    • Export Citation
  • 29.

    Bullock T, Giesbrecht B. Acute exercise and aerobic fitness influence selective attention during visual search. Front Psychol. 2014;5:1290. PubMed ID: 25426094 doi:10.3389/fpsyg.2014.01290

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Veldema J, Jansen P. The relationship among cognition, psychological well-being, physical activity and demographic data in people over 80 years of age. Exp Aging Res. 2019;45(5):400409. PubMed ID: 31514585 doi:10.1080/0361073X.2019.1664459

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Formenti D, Cavaggioni L, Duca M, Trecroci A, Rapelli M, Alberti G, Komar J, Iodice P. Acute effect of exercise on cognitive performance in middle-aged adults: aerobic versus balance [published online ahead of print July 23, 2020] J Phys Act Health. 18. doi:10.1123/jpah.2020-0005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Verbruggen F, Logan GD. Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. J Exp Psychol Gen. 2008;137(4):649672. PubMed ID: 18999358 doi:10.1037/a0013170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ficarella SC, Battelli L. Motor preparation for action inhibition: a review of single pulse TMS studies using the Go/NoGo paradigm. Front Psychol. 2019;10:340. PubMed ID: 30846954 doi:10.3389/fpsyg.2019.00340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Treisman A. Focused attention in the perception and retrieval of multidimensional stimuli. Percep Psychophys. 1977;22(1):111. doi:10.3758/BF03206074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Gardony AL, Eddy MD, Brunyé TT, Taylor HA. Cognitive strategies in the mental rotation task revealed by EEG spectral power. Brain Cogn. 2017;118:118. PubMed ID: 28734164 doi:10.1016/j.bandc.2017.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Radüntz T. The effect of planning, strategy learning, and working memory capacity on mental workload. Sci Rep. 2020;10(1):7096. PubMed ID: 32341379 doi:10.1038/s41598-020-63897-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Silva DR, Minderico CS, Pinto F, Collings PJ, Cyrino ES, Sardinha LB. Impact of a classroom standing desk intervention on daily objectively measured sedentary behavior and physical activity in youth. J Sci Med Sport. 2018;21(9):919924. PubMed ID: 29409737 doi:10.1016/j.jsams.2018.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Clemes SA, Barber SE, Bingham DD, et al. Reducing children’s classroom sitting time using sit-to-stand desks: findings from pilot studies in UK and Australian primary schools. J Public Health. 2016;38(3):526533. doi:10.1093/pubmed/fdv084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Contardo Ayala AM, Salmon J, Timperio A, et al. Impact of an 8-month trial using height-adjustable desks on children’s classroom sitting patterns and markers of cardio-metabolic and musculoskeletal health. Int J Environ Res Public Health. 2016;13(12). doi:10.3390/ijerph13121227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Lynch BA, Kaufman TK, Rajjo TI, et al. Accuracy of accelerometers for measuring physical activity and levels of sedentary behavior in children: a systematic review. J Prim Care Community Health. 2019;10:2150132719874252. PubMed ID: 31509061 doi:10.1177/2150132719874252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Melanson EL, Freedson PS. Validity of the Computer Science and Applications, Inc. (CSA) activity monitor. Med Sci Sports Exerc. 1995;27(6):934940. PubMed ID: 7658958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Silva DR, Minderico CS, Júdice PB, et al. Agreement between GT3X accelerometer and ActivPAL inclinometer for estimating and detecting changes in different contexts of sedentary time among adolescents. J Phys Act Health. 2019;16(9):780784. PubMed ID: 31319402 doi:10.1123/jpah.2018-0178

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Joyner C, Loprinzi PD. Longitudinal effects of personality on physical activity among college students: examining executive function as a potential moderator. Psychol Rep. 2018;121(2):344355. PubMed ID: 28799886 doi:10.1177/0033294117726076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135168. doi:10.1146/annurev-psych-113011-143750

  • 45.

    Voss MW, Carr LJ, Clark R, Weng T. Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Mental Health and Physical Activity. 2014;7(1):924. doi:10.1016/j.mhpa.2014.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Lubans D, Richards J, Hillman C, et al. Physical activity for cognitive and mental health in youth: a systematic review of mechanisms. Pediatrics. 2016;138(3):e20161642. PubMed ID: 27542849 doi:10.1542/peds.2016-1642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Vaynman S, Gomez-Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res.. 2006;84(4):699715. PubMed ID: 16862541 doi:10.1002/jnr.20979

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Norris E, Shelton N, Dunsmuir S, Duke-Williams O, Stamatakis E. Physically active lessons as physical activity and educational interventions: a systematic review of methods and results. Prev Med. 2015;72:116125. PubMed ID: 25562754 doi:10.1016/j.ypmed.2014.12.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Dobbins M, De Corby K, Robeson P, Husson H, Tirilis D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6-18. Cochrane Database Syst Rev. 2009;1:CD007651. doi:10.1002/14651858.CD007651

    • Search Google Scholar
    • Export Citation
  • 50.

    Fullan M. The New Meaning of Educational Change. New York, NY: Teachers College Press; 2001.

  • 51.

    Skage I, Ertesvåg SK, Roland P, Dyrstad SM. Implementation of physically active lessons: a 2-year follow-up. Eval Program Plann. 2020;83:101874. PubMed ID: 33007658 doi:10.1016/j.evalprogplan.2020.101874

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 377 377 81
Full Text Views 564 564 1
PDF Downloads 294 294 1