A Network Perspective on the Relationship Between Moderate to Vigorous Physical Activity and Fundamental Motor Skills in Early Childhood

Click name to view affiliation

Thaynã Alves Bezerra
Search for other papers by Thaynã Alves Bezerra in
Current site
Google Scholar
PubMed
Close
,
Paulo Felipe Ribeiro Bandeira
Search for other papers by Paulo Felipe Ribeiro Bandeira in
Current site
Google Scholar
PubMed
Close
,
Anastácio Neco de Souza Filho
Search for other papers by Anastácio Neco de Souza Filho in
Current site
Google Scholar
PubMed
Close
,
Cain Craig Truman Clark
Search for other papers by Cain Craig Truman Clark in
Current site
Google Scholar
PubMed
Close
,
Jorge Augusto Pinto Silva Mota
Search for other papers by Jorge Augusto Pinto Silva Mota in
Current site
Google Scholar
PubMed
Close
,
Michael Joseph Duncan
Search for other papers by Michael Joseph Duncan in
Current site
Google Scholar
PubMed
Close
, and
Clarice Maria de Lucena Martins
Search for other papers by Clarice Maria de Lucena Martins in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: The relationship between moderate to vigorous physical activity (MVPA) and fundamental motor skill (FMS) is inconsistent in early childhood, due to its complex and nonlinear characteristics. This study aimed to analyze the nonlinear relationships between MVPA, FMS, body mass index (BMI), sex, and age in preschoolers. Methods: This cross-sectional study with preschoolers (n = 204; 4.0 [0.8] y old; 99 boys), provided objective physical activity data, FMS assessments, and BMI. The associations between MVPA, FMS, BMI, sex, and age were explored using the network analysis (RStudio and qgraph). Results: Boys were more motor competent than girls in all FMS skills, while girls were more active than boys during the weekend. Older children were less active than their younger peers during these days. MVPA is weak and differently related to each FMS, and the leap skill emerged with the highest betweenness and strength values in the network. Conclusions: For the assessed preschoolers, when considering BMI, age, and sex, the relationships between MVPA and FMS are inconsistent, and leap emerged as the main variable. During early childhood, these variables are connected as part of a complex system in which each skill has a dynamic role within the emerging pattern.

Bezerra and Souza Filho are with the Department of Physical Education, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraíba, Brazil. Bandeira is with the Department of Physical Education, Regional University of Cariri, Crato, Ceará, Brazil. Clark is with the Institute of Health and Well-being, and with the Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom. Mota is with the Research Centre of Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal, and the Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal. Duncan is with the Centre for Applied Biological and Exercise Sciences, Coventry University, Coventry, United Kingdom. Lucena Martins is with the Department of Physical Education, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraíba, Brazil; the Research Center in Physical Activity, health and Leisure (CIAFEL), Faculty of Sports, University of Porto (FADEUP), Portugal; and the Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.

Bezerra (thaynaalves.ef@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Pate RR, Hillman CH, Janz KF, et al. Physical activity and health in children younger than 6 years: a systematic review. Med Sci Sports Exerc. 2019;51(6):12821291. PubMed ID: 31095085 doi:10.1249/MSS.0000000000001940

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Carson V, Lee EY, Hewitt L, et al. Systematic review of the relationships between physical activity and health indicators in the early years (0-4 years). BMC Public Health. 2017;17(suppl 5):854. PubMed ID: 29219090 doi:10.1186/s12889-017-4860-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Figueroa R, An R. Motor skill competence and physical activity in preschoolers: a review. Matern Child Health J. 2017;21(1):136146. PubMed ID: 27417826 doi:10.1007/s10995-016-2102-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Robinson LE, Wadsworth DD, Peoples CM. Correlates of school-day physical activity in preschool students. Res Q Exerc Sport. 2012;83(1):2026. PubMed ID: 22428408 doi:10.1080/02701367.2012.10599821

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stodden DF, Goodway JD, Langendorfer SJ, et al. A developmental perspective on the role of motor skill competence in physical activity: an emergent relationship. Quest. 2008;60(2):290306. doi:10.1080/00336297.2008.10483582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hulteen RM, Morgan PJ, Barnett LM, Stodden DF, Lubans DR. Development of foundational movement skills: a conceptual model for physical activity across the lifespan. Sports Med. 2018;48(7):15331540. PubMed ID: 29524160 doi:10.1007/s40279-018-0892-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pate RR, O’Neill JR, Brown WH, Pfeiffer KA, Dowda M, Addy CL. Prevalence of compliance with a new physical activity guideline for preschool-age children. Child Obes. 2015;11(4):415420. PubMed ID: 26121562 doi:10.1089/chi.2014.0143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Iivonen S, Sääkslahti AK. Preschool children’s fundamental motor skills: a review of significant determinants. Early Child Dev Care. 2014;184(7):11071126. doi:10.1080/03004430.2013.837897

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Barnett L, Hinkley T, Okely AD, Salmon J. Child, family and environmental correlates of children’s motor skill proficiency. J Sci Med Sport. 2013;16(4):332336. PubMed ID: 23020935 doi:10.1016/j.jsams.2012.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Matarma T, Lagström H, Hurme S, et al. Motor skills in association with physical activity, sedentary time, body fat, and day care attendance in 5-6-year-old children—The STEPS Study. Scand J Med Sci Sports. 2018;28(12):26682676. PubMed ID: 30003602 doi:10.1111/sms.13264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Haixia G, Michaela AS, Jennifer RON, Marsha D, Russell RP. How does the relationship between motor skill performance and body mass index impact physical activity in preschool children? Pediatr Exerc Sci. 2018;30(2):266272. doi:10.1123/pes.2017-0074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Van Cauwenberghe E, Jones RA, Hinkley T, Crawford D, Okely AD. Patterns of physical activity and sedentary behaviour in preschool children. Int J Behav Nutr. 2012;9(1):138. doi:10.1186/1479-5868-9-138

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Martins C, Ribeiro Bandeira PF, Filho AS, et al. The combination of three movement behaviours is associated with object control skills, but not locomotor skills, in preschoolers. Eur J Pediatr. 2021;180:1505–1512. doi:10.1007/s00431-020-03921-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Newell KM. Schema theory (1975): retrospectives and prospectives. Res Q Exerc Sport. 2003;74(4):383388. doi:10.1080/02701367.2003.10609108

  • 15.

    Schmittmann VD, Cramer AOJ, Waldorp LJ, Epskamp S, Kievit RA, Borsboom D. Deconstructing the construct: a network perspective on psychological phenomena. New Ideas Psychol. 2013;31(1):4353. doi:10.1016/j.newideapsych.2011.02.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Silva RS. Base Nacional Comum Curricular MEC. (2018).

  • 17.

    Instituto Brasileiro de Geografia e Estatística. Indicadores sociais municipais : uma análise dos resultados do universo do censo demográfico 2010 Rio de Janeiro; 2011.

    • Search Google Scholar
    • Export Citation
  • 18.

    Valentini N. Validity and reliability of the TGMD-2 for Brazilian children. J Mot Behav. 2012;44(4):275280. PubMed ID: 22857518 doi:10.1080/00222895.2012.700967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ulrich DA, Sanford CB. Test of Gross Motor Development: Examiner’s Manual. Austin, TX: Pro-Ed; 2000.

  • 20.

    Bornstein D, Beets M, Byun W, McIver K. Accelerometer-derived physical activity levels of preschoolers: a meta-analysis. J Sci Med Sport J Sci Med Sport. 2011;14:504511. doi:10.1016/j.jsams.2011.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cliff D, Smith L, McKeen K. Relationships between fundamental movement skills and objectively measured physical activity in preschool children. Pediatr Exerc Sci. 2009;21(4):436449. PubMed ID: 20128363 doi:10.1123/pes.21.4.436

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Dale WE, Jennifer LC, Joel DB, Mark ST. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Act Health. 2005;2(3):366383. doi:10.1123/jpah.2.3.366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Butte N, Wong W, Lee J, Adolph A, Puyau M, Zakeri I. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2013;46(6):12161226. doi:10.1249/MSS.0000000000000209

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    World Health Organization. Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age. Geneva: World Health Organization; 2019.

    • Search Google Scholar
    • Export Citation
  • 25.

    de Onis M. WHO Child Growth Standards. Geneva: WHO; 2006:1Á336.

  • 26.

    Schiepek GK, Viol K, Aichhorn W, et al. Psychotherapy is chaotic—(Not only) in a computational world. Front Psychol. 2017;8:379. PubMed ID: 28484401 doi:10.3389/fpsyg.2017.00379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Valdez AB, Amazeen EL. Target dimension affects 1/f noise in aiming. Nonlinear Dynamics Psychol Life Sci. 2009;13(4):36992. PubMed ID: 19781136

  • 28.

    Lorenz E. Predictability: Does the Flap of a Butterfly’s Wing in Brazil Set off a Tornado in Texas? Paper presented at the annual meeting of the American Association for the Advancement of Science, Washington, DC. 1972.

    • Search Google Scholar
    • Export Citation
  • 29.

    Jones PJ, Mair P, McNally RJ. Visualizing psychological networks: a tutorial in R. Front Psychol. 2018;9:17421742. PubMed ID: 30283387 doi:10.3389/fpsyg.2018.01742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pract Exp. 1991;21(11):11291164. doi:10.1002/spe.4380211102

  • 31.

    Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432441. PubMed ID: 18079126 doi:10.1093/biostatistics/kxm045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Foygel R, Drton M. Extended Bayesian information criteria for Gaussian graphical models. arXiv preprint arXiv:1011.6640.

  • 33.

    Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: Network visualizations of relationships in psychometric data. J Stat Softw. 2012;48(4): 23889. doi:10.18637/jss.v048.i04

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Alhassan S, Nwaokelemeh O, Ghazarian M, Roberts J, Mendoza A, Shitole S. Effects of locomotor skill program on minority preschoolers’ physical activity levels. Pediatr Exerc Sci. 2012;24(3):435449. PubMed ID: 22971559 doi:10.1123/pes.24.3.435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Foweather L, Knowles Z, Ridgers N, O’Dwyer M, Foulkes J, Stratton G. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children. J Sci Med Sport. 2014;18(6):691696. doi:10.1016/j.jsams.2014.09.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Barnett L, Lai S, Veldman S, et al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46(11):16631688. PubMed ID: 26894274 doi:10.1007/s40279-016-0495-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Koziol LF, Lutz JT. From movement to thought: the development of executive function. Appl Neuropsychol Child. 2013;2(2):104115. PubMed ID: 23848244 doi:10.1080/21622965.2013.748386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cools W, De Martelaer K, Samaey C, Andries C. Fundamental movement skill performance of preschool children in relation to family context. J Sports Sci. 2011;29(7):649660. PubMed ID: 21424981 doi:10.1080/02640414.2010.551540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Edwards NM, Khoury PR, Kalkwarf HJ, Woo JG, Claytor RP, Daniels SR. Tracking of accelerometer-measured physical activity in early childhood. Pediatr Exerc Sci. 2013;25(3):487501. PubMed ID: 23877325 doi:10.1123/pes.25.3.487

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kathryn LD. Teaching for gender equity in physical education: a review of the literature. Women Sport Phys Act J. 2003;12(2):5581. doi:10.1123/wspaj.12.2.55

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Garcia C. Gender differences in young children’s interactions when learning fundamental motor skills. Res Q Exerc Sport. 1994;65(3):213225. PubMed ID: 7973070 doi:10.1080/02701367.1994.10607622

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kwon S, Janz KF, Burns TL, Levy SM. Effects of adiposity on physical activity in childhood: Iowa Bone Development Study. Med Sci Sports Exerc. 2011;43(3):443448. PubMed ID: 20631643 doi:10.1249/MSS.0b013e3181ef3b0a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Lopes VP, Utesch T, Rodrigues LP. Classes of developmental trajectories of body mass index: differences in motor competence and cardiorespiratory fitness. J Sports Sci. 2020;38(6):619625. PubMed ID: 31992151 doi:10.1080/02640414.2020.1722024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Roca P, Diez GG, Castellanos N, Vazquez C. Does mindfulness change the mind? A novel psychonectome perspective based on Network Analysis. PLoS One. 2019;14(7):e0219793. PubMed ID: 31318929 doi:10.1371/journal.pone.0219793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci. 1963;20(2):130141. doi:10.1175/1520-0469(1963)020%2C0130:DNF%2E2.0.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Borsboom D, Cramer AOJ. Network analysis: an integrative approach to the structure of psychopathology. Annu Rev Clin Psychol. 2013;9(1):91121. doi:10.1146/annurev-clinpsy-050212-185608

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2178 632 24
Full Text Views 59 21 9
PDF Downloads 54 9 1