Energy Expenditure of Level Overground Walking in Young Adults: Comparison With Prediction Equations

in Journal of Physical Activity and Health
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: The purpose of this study was to investigate the accuracy of the published prediction equations for determining level overground walking energy cost in young adults. Methods: In total, 148 healthy young adults volunteered to participate in this study. Resting metabolic rate and energy expenditure variables at speeds of 4, 5, and 6 km/h were measured by indirect calorimetry, walking energy expenditure was estimated by 3 published equations. Results: The gross and net metabolic rate per mile of level overground walking increased with increased speed (all P < .01). Females were less economical than males. The present findings revealed that the American College of Sports Medicine and Pandolf et al equations significantly underestimated the energy cost of overground walking at all speeds (all P < .01) in young adults. The percentage mean bias for American College of Sports Medicine, Pandolf et al, and Weyand et al was 12.4%, 16.8%, 1.4% (4 km/h); 21.6%, 15.8%, 7.1% (5 km/h); and 27.6%, 12%, 6.6% (6 km/h). Bland–Altman plots and prediction error analysis showed that the Weyand et al was the most accurate in 3 existing equations. Conclusions: The Weyand et al equation appears to be the most suitable for the prediction of overground walking energy expenditure in young adults.

Xue and Wen are with the School of Humanities, Beijing Dance Academy, Beijing, China. Li is with the School of Sport Science, Shanghai University of Sport, Shanghai, China. Hong is with the Winter Sports Administrative Center, General Administration of Sport of China, Beijing, China; and the China Institute of Sport Science, Beijing, China.

Hong (hp@sport.org.cn) is corresponding author.
  • 1.

    Isomaa B, Almgren P, Tuomi T, et al. . Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24(4):683689. PubMed ID: 11315831 doi:10.2337/diacare.24.4.683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kumar DA, Pallavi D, Cistola David P, Reddy Sireesha Y. Association between obesity and cardiovascular outcomes: updated evidence from meta-analysis studies. Curr Cardiol Rep. 2020;22(4):25. doi:10.1007/s11886-020-1273-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Uçkun-Kitapçi A, Teziç T, Firat S, et al. . Obesity and type 2 diabetes mellitus: a population-based study of adolescents. J Pediatr Endocrinol Metab. 2004;17(12):16331640. PubMed ID: 15645697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pi-Sunyer FX. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res. 2002;10(suppl):97S104S. doi:10.1038/oby.2002.202

  • 5.

    Gaziano JM. Fifth phase of the epidemiologic transition: the age of obesity and inactivity. JAMA. 2010;303(3):275276. PubMed ID: 20071469 doi:10.1001/jama.2009.2025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Jakicic JM, Winters C, Lang W, Wing RR. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: a randomized trial. JAMA. 1999;282(16):15541560. PubMed ID: 10546695 doi:10.1001/jama.282.16.1554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Le Masurier GC, Sidman CL, Corbin CB. Accumulating 10,000 steps: does this meet current physical activity guidelines. Res Q Exerc Sport. 2003;74(4):389394. PubMed ID: 14768840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Haskell WL, Lee IM, Pate RR, et al. . Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):14231434. PubMed ID: 17762377 doi:10.1249/mss.0b013e3180616b27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription Tenth Edition. Philadelphia, PA: Wolters Kluwer; 2018.

    • Search Google Scholar
    • Export Citation
  • 10.

    Wenhua Zhao. Physical Activity Guidelines for Chinese Adults. China: People’s Medical Publishing House; 2011.

  • 11.

    Schoeller DA, Ravussin E, Schutz Y, Acheson KJ, Baertschi P, Jéquier E. Energy expenditure by doubly labeled water: validation in humans and proposed calculation. Am J Physiol. 1986; 250:823830.

    • Search Google Scholar
    • Export Citation
  • 12.

    Spurr GB, Prentice AM, Murgatroyd PR, Goldberg GR, Reina JC, Christman NT. Energy expenditure from minute-by-minute heart-rate recording: comparison with indirect calorimetry. Am J Clin Nutr. 1988;48(3):552559. PubMed ID: 3414570 doi:10.1093/ajcn/48.3.552

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pandolf KB, Givoni B, Goldman RF. Predicting energy expenditure with loads while standing or walking very slowly. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(4):577581. PubMed ID: 908672

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Drain JR, Aisbett B, Lewis M, Billing DC. The Pandolf equation under-predicts the metabolic rate of contemporary military load carriage. J Sci Med Sport. 2017;20(suppl):S104S108. doi:10.1016/j.jsams.2017.08.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    van der Walt WH, Wyndham CH. An equation for prediction of energy expenditure of walking and running. J Appl Physiol. 1973;34(5):559563. doi:10.1152/jappl.1973.34.5.559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hiroshi H, Fujio I. Influence of higher-grade walking on metabolic demands in young untrained Japanese women. J Strength Cond Res. 2007;21(2):405408.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hall C, Figueroa A, Fernhall B, Kanaley JA. Energy expenditure of walking and running: comparison with prediction equations. Med Sci Sports Exerc. 2004;36(12):21282134. PubMed ID: 15570150 doi:10.1249/01.MSS.0000147584.87788.0E

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Weyand Peter G, Smith Bethany R, Schultz Nicole S, Ludlow Lindsay W, Puyau Maurice R, Butte Nancy F. Predicting metabolic rate across walking speed: one fit for all body sizes. J Appl Physiol. 2013;115(9):13321342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Anders C, Patenge S, Sander K, Layher F, Kinne RW. Systematic differences of gluteal muscle activation during overground and treadmill walking in healthy older adults. J Electromyogr Kinesiol. 2019;44:5663. PubMed ID: 30513450 doi:10.1016/j.jelekin.2018.11.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Roeder L, Boonstra TW, Smith SS, Kerr GK. Dynamics of corticospinal motor control during overground and treadmill walking in humans. J Neurophysiol. 2018;120(3):10171031. PubMed ID: 29847229 doi:10.1152/jn.00613.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    O’Connor SM, Xu HZ, Kuo AD. Energetic cost of walking with increased step variability. Gait Posture. 2012;36(1):102107. PubMed ID: 22459093 doi:10.1016/j.gaitpost.2012.01.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Berryman N, Gayda M, Nigam A, Juneau M, Bherer L, Bosquet L. Comparison of the metabolic energy cost of overground and treadmill walking in older adults. Eur J Appl Physiol. 2012;112(5):16131620. PubMed ID: 21863296 doi:10.1007/s00421-011-2102-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Agiovlasitis S, Mendonca GV, McCubbin JA, Fernhall B. Prediction of energy expenditure during walking in adults with down syndrome. J Appl Res Intellect Disabil. 2018;31 31:151156. doi:10.1111/jar.12392

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Agiovlasitis S, Motl RW, Ranadive SM, et al. . Prediction of oxygen uptake during over-ground walking in people with and without Down syndrome. Eur J Appl Physiol. 2011;111(8):17391745. PubMed ID: 21221988 doi:10.1007/s00421-010-1812-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Agiovlasitis S, Sandroff BM, Motl RW. Prediction of oxygen uptake during walking in ambulatory persons with multiple sclerosis. J Rehabil Res Dev. 2016;53(2):199206. PubMed ID: 27148824 doi:10.1682/JRRD.2014.12.0307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture. 2010;31(3):366369. PubMed ID: 20129785 doi:10.1016/j.gaitpost.2010.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wasserman K, Hansen JE, Sue DY, et al. . Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications: Fifth Edition. Philadelphia, PA: Lippincott, Williams and Wilkins; 2011.

    • Search Google Scholar
    • Export Citation
  • 28.

    Liguori G, Dwyer GB, Fitts TC, Lewis B. ACSM’s resources for the health fitness specialist. Philadelphia, PA: Wolters Kluwer Wolters Kluwer Health/Lippincott Williams & Wilkins; 2014.

    • Search Google Scholar
    • Export Citation
  • 29.

    Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22(1):8593. PubMed ID: 12858311 doi:10.1002/uog.122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stoedefalke K, Hawkins MA. The accuracy of the ACSM prediction equations, for determining walking caloric expenditure, in college-aged males and females. J Am Coll Health. 2020:14. doi:10.1080/07448481.2020.1727910

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ludlow LW, Weyand PG. Energy expenditure during level human walking: seeking a simple and accurate predictive solution. J Appl Physiol. 2016;120(5):481494. doi:10.1152/japplphysiol.00864.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Butts NK, Knox KM, Foley TS. Energy costs of walking on a dual-action treadmill in men and women. Med Sci Sports Exerc. 1995;27(1):121125. PubMed ID: 7898327 doi:10.1249/00005768-199501000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pimental NA, Shapiro Y, Pandolf KB. Comparison of uphill and downhill walking and concentric and eccentric cycling. Ergonomics. 1982;25(5):373380. PubMed ID: 7128567 doi:10.1080/00140138208925003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Looney DP, Santee WR, Karis AJ, et al. . Metabolic costs of military load carriage over complex terrain. Mil Med. 2018;183(9-10):e357e362. PubMed ID: 29860513 doi:10.1093/milmed/usx099

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dill DB. Oxygen used in horizontal and grade walking and running on the treadmill. J Appl Physiol. 1965;20(1):1922. PubMed ID: 14257553 doi:10.1152/jappl.1965.20.1.19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Weyand PG, Smith BR, Puyau MR, Butte NF. The mass-specific energy cost of human walking is set by stature. J Exp Biol. 2010;213(23):39723979. PubMed ID: 21075938 doi:10.1242/jeb.048199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    DeLany JP, Kelley DE, Hames KC, et al. . High energy expenditure masks low physical activity in obesity. Int J Obes. 2013;37(7):10061011. doi:10.1038/ijo.2012.172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Mark L, Melinda S, Cathie K, et al. . Energy expenditure and influence of physiologic factors during marathon running. J Strength Cond. Res. 2007;21:11881191.

    • Search Google Scholar
    • Export Citation
  • 39.

    Overstreet BS, Bassett DR, Crouter SE, Rider BC, Parr BB. Portable open-circuit spirometry systems. J Sports Med Phys Fitness. f2017;57(3):227237.

  • 40.

    Andrew JV, Anthony JR, Christopher JG. Validity and reliability of the Cortex MetaMax3B portable metabolic system. J Sports Sci. 2010;28(7):733742. doi:10.1080/02640410903582776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Pearce ME, Cunningham DA, Donner AP, Rechnitzer PA, Fullerton GM, Howard JH. Energy cost of treadmill and floor walking at self-selected paces. Eur J Appl Physiol Occup Physiol. 1983;52(1):115119. PubMed ID: 6686120 doi:10.1007/BF00429037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Parvataneni K, Ploeg L, Olney SJ, Brouwer B. Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults. Clin Biomech. 2009;24(1):95100. doi:10.1016/j.clinbiomech.2008.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Fukuchi CA, Fukuchi RK, Duarte M. A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals. PeerJ. 2018;6:e4640. PubMed ID: 29707431 doi:10.7717/peerj.4640

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Bidder OR, Goulding C, Toledo A, van Walsum TA, Siebert U, Halsey LG. Does the treadmill support valid energetics estimates of field locomotion. Integr Comp Biol. 2017;57(2):301319. PubMed ID: 28859410 doi:10.1093/icb/icx038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Hatamoto Y, Yamada Y, Fujii T, Higaki Y, Kiyonaga A, Tanaka H. A novel method for calculating the energy cost of turning during running. Open Access J Sports Med. 2013;4:117122. PubMed ID: 24379716 doi:10.2147/OAJSM.S39206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wilson RP, Griffiths IW, Legg PA, et al. . Turn costs change the value of animal search paths. Ecol Lett. 2013;16(9):11451150. PubMed ID: 23848530 doi:10.1111/ele.12149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Weyand PG, Smith BR, Sandell RF. Assessing the metabolic cost of walking: the influence of baseline subtractions. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:68786881.

    • Search Google Scholar
    • Export Citation
  • 48.

    Swain DP. Energy cost calculations for exercise prescription: an update. Sports Med. 2000;30(1):1722. PubMed ID: 10907754 doi:10.2165/00007256-200030010-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Waters RL, Mulroy S. The energy expenditure of normal and pathologic gait. Gait Posture. 1999;9(3):207231. PubMed ID: 10575082 doi:10.1016/S0966-6362(99)00009-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Browning RC, Baker EA, Herron JA, Kram R. Effects of obesity and sex on the energetic cost and preferred speed of walking. J Appl Physiol. 2006;100(2):390398. doi:10.1152/japplphysiol.00767.2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Donelan JM, Kram R, Kuo AD. Mechanical and metabolic determinants of the preferred step width in human walking. Proc Biol Sci. 2001;268(1480):19851992. PubMed ID: 11571044 doi:10.1098/rspb.2001.1761.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Spyropoulos P, Pisciotta JC, Pavlou KN, Cairns MA, Simon SR. Biomechanical gait analysis in obese men. Arch Phys Med Rehabil. 1991;72(13):10651070. PubMed ID: 1741658

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Shorter KA, Wu A, Kuo AD. The high cost of swing leg circumduction during human walking. Gait Posture. 2017;54:265270. PubMed ID: 28371740 doi:10.1016/j.gaitpost.2017.03.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8 8 8
Full Text Views 3 3 3
PDF Downloads 5 5 5