Longitudinal Associations Between Neighborhood Park and Open Space Access and Children’s Accelerometer-Assessed Measured Physical Activity: The Evidence From the MATCH Study

in Journal of Physical Activity and Health
Restricted access

Background: Cross-sectional studies have shown positive associations between neighborhood park access and children’s physical activity (PA); however, research that examines the relationship longitudinally is lacking. This study investigates how neighborhood park access affects the longitudinal trajectory of PA in 192 children across 3 years. Methods: Accelerometer-assessed PA data of children (N = 202) were collected across 6 semi-annual waves (7 d each) between 2014 and 2018. Geographical information systems was used to measure neighborhood park access (ie, coverage, density, and proximity) at baseline. Mixed-effects models examined the associations of park access with children’s baseline and trajectory of moderate to vigorous PA (MVPA) minutes across 3 years and whether the associations differed by sex or weekends versus weekdays. Results: Higher neighborhood park density, coverage, and proximity were positively associated with children’s baseline MVPA minutes per day. Longitudinally, higher park coverage was associated with smaller decreases in children’s MVPA minutes per day, but only during weekends. Park density and proximity were not associated with change in MVPA minutes per day. The above associations did not differ by sex. Conclusions: Having access to more neighborhood parklands protected against age-related declines in children’s PA. These findings suggest that neighborhood park coverage should be considered by urban planners when evaluating the health impacts of their policies.

Yi is with the Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA. Mason, Chu, and Dunton are with the Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA. Yang is with the Department of Exercise Science, University of South Carolina, Los Angeles, CA, USA. Dunton is also with the Department of Psychology, University of Southern California, Los Angeles, CA, USA.

Yi (liyi.1@usc.edu) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 688 KB)
    • Supplementary Table S2 (PDF 838 KB)
  • 1.

    Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):20202028. PubMed ID: 30418471 doi:10.1001/jama.2018.14854

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    2018 Physical Activity Guidelines Advisory Committee, PAGAC. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: US Department of Health and Human Services; 2018. https://health.gov/paguidelines/second-edition/report/. Accessed March 26, 2019.

    • Search Google Scholar
    • Export Citation
  • 3.

    Sallis JF, Floyd MF, Rodríguez DA, Saelens BE, Rodriguez DA, Saelens BE. The role of built environments in physical activity, obesity, and CVD. Circulation. 2012;125(5):729737. PubMed ID: 22311885 doi:10.1161/CIRCULATIONAHA.110.969022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kaczynski AT, Henderson KA. Environmental correlates of physical activity: a review of evidence about parks and recreation. Leis Sci. 2007;29(4):315354. doi:10.1080/01490400701394865

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Veitch J, Salmon J, Ball K. Individual, social and physical environmental correlates of children’s active free-play: a cross-sectional study. Int J Behav Nutr Phys Act. 2010;7(1):11. PubMed ID: 20181061 doi:10.1186/1479-5868-7-11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth: a review. Am J Prev Med. 2011;41(4):442455. PubMed ID: 21961474 doi:10.1016/j.amepre.2011.06.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dunton GF, Dzubur E, Kawabata K, Yanez B, Bo B, Intille S. Development of a smartphone application to measure physical activity using sensor-assisted self-report. Front Public Heal. 2014;2:12. doi:10.3389/fpubh.2014.00012

    • Search Google Scholar
    • Export Citation
  • 8.

    Epstein LH, Raja S, Gold SS, Paluch RA, Pak Y, Roemmich JN. Reducing sedentary behavior: the relationship between park area and the physical activity of youth. Psychol Sci. 2006;17(8):654659. PubMed ID: 16913945 doi:10.1111/j.1467-9280.2006.01761.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Roemmich JN, Epstein LH, Raja S, Yin L. The neighborhood and home environments: disparate relationships with physical activity and sedentary behaviors in youth. Ann Behav Med. 2007;33(1):2938. PubMed ID: 17291168 doi:10.1207/s15324796abm3301_4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bancroft C, Joshi S, Rundle A, et al. Association of proximity and density of parks and objectively measured physical activity in the United States: a systematic review. Soc Sci Med. 2015;138:2230. PubMed ID: 26043433 doi:10.1016/j.socscimed.2015.05.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kaczynski AT, Mowen AJ. Does self-selection influence the relationship between park availability and physical activity? Prev Med. 2011;52(1):2325. doi:10.1016/j.ypmed.2010.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schipperijn J, Ried-Larsen M, Nielsen MS, et al. A longitudinal study of objectively measured built environment as determinant of physical activity in young adults: the European youth heart study. J Phys Act Heal. 2014;12(7):909914. doi:10.1123/jpah.2014-0039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Buck C, Eiben G, Lauria F, et al. Urban moveability and physical activity in children: longitudinal results from the IDEFICS and I.Family cohort. Int J Behav Nutr Phys Act. 2019;16(1):128. PubMed ID: 31829198 doi:10.1186/s12966-019-0886-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Austin G, Duncan MJ, Bell T. Codesigning parks for increasing park visits and physical activity in a low-socioeconomic community: the active by community design experience. Health Promot Pract. 2020;22(3):338348. PubMed ID: 32088991 doi:10.1177/1524839919900768

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Heath GW, Bilderback J. Grow healthy together: effects of policy and environmental interventions on physical activity among urban children and youth. J Phys Act Heal. 2019;16(2):172176. doi:10.1123/jpah.2018-0026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Veitch J, Ball K, Crawford D, Abbott GR, Salmon J. Park improvements and park activity: a natural experiment. Am J Prev Med. 2012;42(6):616619. PubMed ID: 22608379 doi:10.1016/j.amepre.2012.02.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Christiansen LB, Madsen T, Schipperijn J, Ersbøll AK, Troelsen J. Variations in active transport behavior among different neighborhoods and across adult life stages. J Transp Heal. 2014;1(4):316325. doi:10.1016/j.jth.2014.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Timperio A, Giles-Corti B, Crawford D, et al. Features of public open spaces and physical activity among children: findings from the CLAN study. Prev Med. 2008;47(5):514518. doi:10.1016/j.ypmed.2008.07.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dunton GF, Liao Y, Dzubur E, et al. Investigating within-day and longitudinal effects of maternal stress on children’s physical activity, dietary intake, and body composition: protocol for the MATCH study. Contemp Clin Trials. 2015;43:142154. PubMed ID: 25987483 doi:10.1016/j.cct.2015.05.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11):S523S530. doi:10.1249/01.mss.0000185658.28284.ba

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, age, gender, and weight status. Med Sci Sports Exerc. 2010;42(12):22112221. PubMed ID: 21084930 doi:10.1249/MSS.0b013e3181e1fba9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, Mcdowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    DiPietro L, Al-Ansari SS, Biddle SJH, et al. Advancing the global physical activity agenda: recommendations for future research by the 2020 WHO physical activity and sedentary behavior guidelines development group. Int J Behav Nutr Phys Act. 2020;17(1):143. PubMed ID: 33239105 doi:10.1186/s12966-020-01042-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Forsyth A, Van Riper D, Larson N, Wall M, Neumark-Sztainer D. Creating a replicable, valid cross-platform buffering technique: the sausage network buffer for measuring food and physical activity built environments. Int J Health Geogr. 2012;11(1):14. PubMed ID: 22554353 doi:10.1186/1476-072X-11-14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    James P, Berrigan D, Hart JE, et al. Effects of buffer size and shape on associations between the built environment and energy balance. Health & Place. 2014;27:162170. PubMed ID: 24607875 doi:10.1016/j.healthplace.2014.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kwan M-P. The uncertain geographic context problem. Ann Assoc Am Geogr. 2012;102(5):958968. doi:10.1080/00045608.2012.687349

  • 27.

    Frank L, Schmid T, Sallis J, Chapman J, Saelens B. Linking objectively measured physical activity with objectively measured urban form: findings from SMARTRAQ. Am J Prev Med. 2005;28(2):117125. doi:10.1016/j.amepre.2004.11.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Carroll-Scott A, Gilstad-Hayden K, Rosenthal L, et al. Disentangling neighborhood contextual associations with child body mass index, diet, and physical activity: the role of built, socioeconomic, and social environments. Soc Sci Med. 2013;95:106114. PubMed ID: 23642646 doi:10.1016/j.socscimed.2013.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437450. PubMed ID: 23620392 doi:10.1123/jpah.10.3.437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tabachnick BG, Fidell LS. Using Multivariate Statistics. New York: Harper and Row. 2012. doi:10.1037/022267

  • 31.

    Bates D, Maechler M, Bolker B. Linear Mixed-Effects Models Using S4 Classes Using Lme4. Journal of Statistical Software. 2015;67(1). doi:10.18637/jss.v067.i01

    • Crossref
    • Export Citation
  • 32.

    Babey SH, Wolstein J, Krumholz S, Robertson B, Diamant AL. Physical activity, park access, and park use among California adolescents. American Journal of Preventive Medicine. 2008. doi:10.1016/j.amepre.2008.01.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Loh VHY, Veitch J, Salmon J, et al. Built environment and physical activity among adolescents: the moderating effects of neighborhood safety and social support. Int J Behav Nutr Phys Act. 2019;16(1):132. PubMed ID: 31852521 doi:10.1186/s12966-019-0898-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Scott MM, Cohen DA, Evenson KR, et al. Weekend schoolyard accessibility, physical activity, and obesity: the trial of activity in adolescent girls (TAAG) study. Prev Med. 2007;44(5):398403. doi:10.1016/j.ypmed.2006.12.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bradley RH, McRitchie S, Houts RM, Nader P, O’Brien M. Parenting and the decline of physical activity from age 9 to 15. Int J Behav Nutr Phys Act. 2011;8(1):33. PubMed ID: 21492482 doi:10.1186/1479-5868-8-33

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Klinker CD, Schipperijn J, Christian G, Kerr J, Ersbøll AK, Troelsen J. Using accelerometers and global positioning system devices to assess gender and age differences in children’s school, transport, leisure and home based physical activity. Int J Behav Nutr Phys Act. 2014;11(1): 1–10.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kaczynski AT, Besenyi GM, Stanis SWA, et al. Are park proximity and park features related to park use and park-based physical activity among adults? variations by multiple socio-demographic characteristics. Int J Behav Nutr Phys Act. 2014;11(1):146. PubMed ID: 25480157 doi:10.1186/s12966-014-0146-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Dunton GF, Almanza E, Jerrett M, Wolch J, Pentz MA. Neighborhood park use by children: use of accelerometry and global positioning systems. Am J Prev Med. 2014;46(2):136142. PubMed ID: 24439346 doi:10.1016/j.amepre.2013.10.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Roemmich JN, Epstein LH, Raja S, Yin L, Robinson J, Winiewicz D. Association of access to parks and recreational facilities with the physical activity of young children. Prev Med. 2006;43(6):437441. doi:10.1016/j.ypmed.2006.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Stewart OT, Moudon AV, Littman AJ, Seto E, Saelens BE. Why neighborhood park proximity is not associated with total physical activity. Health & Place. 2018;52:163169. doi:10.1016/j.healthplace.2018.05.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Lackey JL, Kaczynski AT. Correspondence of perceived vs. objective proximity to parks and their relationship to park-based physical activity. Int J Behav Nutr Phys Act. 2009;52:163169. doi:10.1186/1479-5868-6-53

    • Search Google Scholar
    • Export Citation
  • 42.

    Veitch J, Carver A, Abbott G, Giles-Corti B, Timperio A, Salmon J. How active are people in metropolitan parks? An observational study of park visitation in Australia. BMC Public Health. 2015;15(4):610. PubMed ID: 26141112 doi:10.1186/s12889-015-1960-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):1370−1368. PubMed ID: 21131873 doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1291 1184 133
Full Text Views 263 34 1
PDF Downloads 223 44 2