The Relationship Between Habitual Physical Activity, Sitting Time, and Cognitive Function in Young Adult Women

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $119.00

1 year online subscription

USD  $159.00

Student 2 year online subscription

USD  $227.00

2 year online subscription

USD  $302.00

Background: There is evidence that physical activity (PA), sitting time, and obesity may impact cognition, but few studies have examined this in young women. Methods: Healthy women (18–35 y), without conditions that impair cognition, were recruited for this cross-sectional study. Participants completed anthropometric and validated computerized cognitive assessments (IntegNeuro). Performance on 5 cognitive domains (impulsivity, attention, information processing, memory, and executive function) was reported as z scores. Sitting hours and weekly PA calculated from time in low-, moderate-, and high-intensity activity were obtained via the International Physical Activity Questionnaire. Analysis of variance/analysis of covariance, chi-square, and linear regression were used. Results: 299 (25.9 [5.1] y) women (low PA = 19%; moderate PA = 40%; high PA = 41%) participated. High PA women had lower body mass index (high PA = 26.1 [6.5]; moderate PA = 30.0 [8.7]; low PA = 31.0 [11.1] kg/m2; P < .001) and less sitting time (high PA = 6.6 [3.1]; moderate PA = 7.7 [2.8]; low PA = 9.3 [3.6] hr/weekday; P < .0001). Cognitive function was within normal ranges and did not differ between any PA groups (P = .42). Adjusting for body mass index, C-reactive protein, or sitting hours did not alter results. Weak correlations were found between time in high-intensity activity and impulsivity (b = 0.12, r2 = .015; P = .04), and between sitting hours and information processing efficiency (b = −0.18, r2 = .03; P = .002). Valuesare presented as mean (SD). Conclusions: Cognitive function was within the normal range, regardless of PA or sitting time.

Cox, Cook, O’Dwyer, Parker, and O’Connor are with Faculty of Medicine and Health, Discipline of Exercise and Sport Science, The University of Sydney, Sydney, NSW, Australia. O’Dwyer and Donges are with the School of Exercise Science, Sport & Health, Charles Sturt University, Bathurst, NSW, Australia. Parker, Cheng, Steinbeck, and O’Connor are with Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia. Cheng and Steinbeck are also with the Faculty of Medicine and Health, Discipline of Child and Adolescent Health, The University of Sydney, Sydney, NSW, Australia. Franklin is with the Metabolism and Obesity Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.

O’Dwyer (nicholas.odwyer@sydney.edu.au) is corresponding author.
  • 1.

    Bull FC, Al-Ansari SS, Biddle S, et al. . World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):14511462. PubMed ID: 33239350 doi:10.1136/bjsports-2020-102955

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Australian Institute of Health and Welfare 2020. Insufficient physical activity. Cat. no. PHE 248. Canberra, Australia: AIHW. www.aihw.gov.au/reports/risk-factors/insufficient-physical-activity. Accessed March 22, 2021.

    • Search Google Scholar
    • Export Citation
  • 3.

    Lear SA, Hu W, Rangarajan S, et al. . The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet. 2017;390(10113):26432654. PubMed ID: 28943267 doi:10.1016/S0140-6736(17)31634-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Young J, Angevaren M, Rusted J, Tabet N. Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2015;4:CD005381. doi:10.1002/14651858.CD005381.pub4

    • Search Google Scholar
    • Export Citation
  • 5.

    Fedewa AL, Ahn S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes. Res Q Exerc Sport. 2011;82(3):521535. PubMed ID: 21957711 doi:10.1080/02701367.2011.10599785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cox EP, O’Dwyer N, Cook R, et al. . Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: a systematic review. J Sci Med Sport. 2016;19(8):616628. PubMed ID: 26552574 doi:10.1016/j.jsams.2015.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. Geneva, Switzerland: World Health Organization; 2009.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chau JY, Grunseit AC, Chey T, et al. . Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8(11):e80000. PubMed ID: 24236168 doi:10.1371/journal.pone.0080000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cooper A, Page A, Fox K, Misson J. Physical activity patterns in normal, overweight and obese individuals using minute-by-minute accelerometry. Eur J Clin Nutr. 2000;54(12):887894. PubMed ID: 11114687 doi:10.1038/sj.ejcn.1601116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32(5):541556. PubMed ID: 28708630 doi:10.1097/HCO.0000000000000437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gajewki PD, Falkenstein M. Physical activity and neurocognitive functioning in aging—a condensed updated review. Eur Rev Aging Phys Act. 2016;13:1. doi:10.1186/s11556-016-0161-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wang C, Chan JSY, Ren L, Yan JH. Obesity reduces cognitive and motor functions across the lifespan. Neur Plast. 2016;2016:2473081. doi:10.1155/2016/2473081

    • Search Google Scholar
    • Export Citation
  • 13.

    Pugazhenthi S, Qin L, Reddy PH. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Act. 2017;1863(5):10371045. doi:10.1016/j.bbadis.2016.04.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Nilsson L-G, Nilsson E. Overweight and cognition. Scand J Psychol. 2009;50(6):660667. PubMed ID: 19930267 doi:10.1111/j.1467-9450.2009.00777.x

  • 15.

    van den Berg E, Kloppenborg RP, Kessels RPC, Kappelle LJ, Biessels GJ. Type 2 diabetes mellitus, hypertension, dyslipidemia and obesity: a systematic comparison of their impact on cognition. Biochim Biophys Act. 2009;1792(5):470481. doi:10.1016/j.bbadis.2008.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gunstad J, Paul RH, Cohen RA, Tate DF, Gordon E. Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight Disord. 2006;11(1):e15e9. PubMed ID: 16801734 doi:10.1007/BF03327747

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Moreno JP, Johnston CA. Barriers to physical activity in women. Am J Lifestyle Med. 2014;8:1559827614521954. doi:10.1177/1559827614521954

  • 18.

    Gomersall SR, Dobson AJ, Brown WJ. Weight gain, overweight, and obesity: determinants and health outcomes from the Australian Longitudinal Study on Women’s Health. Curr Obes Rep. 2014;3(1):4653. PubMed ID: 26626467 doi:10.1007/s13679-013-0077-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cook RL, O’Dwyer NJ, Donges CE, et al. . Relationship between obesity and cognitive function in young women: the Food Mood and Mind Study. J Obes. 2017;2017:5923862. doi:10.1155/2017/5923862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cook RL, O’Dwyer NJ, Parker HM, et al. . Iron deficiency anemia, not iron deficiency is associated with reduced attention in healthy young women. Nutrients. 2018;9(11):1216. doi:10.3390/nu9111216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Cook RL, Parker HM, Donges CE, et al. . Omega-3 polyunsaturated fatty acids status and cognitive function in young women. Lipid Health Dis. 2019;18(1):194. doi:10.1186/s12944-019-1143-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Australian Institute of Health and Welfare 2018. Australia’s Health 2018. Australia’s Health Series. no. 16. AUS 221. Canberra, Australia: AIHW; 2018.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lam E, Partridge S, Allman‐Farinelli M. Strategies for successful recruitment of young adults to healthy lifestyle programmes for the prevention of weight gain: a systematic review. Obes Rev. 2016;17(2):178200. PubMed ID: 26663091 doi:10.1111/obr.12350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Alberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469480. PubMed ID: 16681555. doi:10.1111/j.1464-5491.2006.01858.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Craig CL, Marshall AL, Sjostrom M, et al. . International Physical Activity Questionnaire: 12-country reliability and validity. Med Sci Sports Exer. 2003;35(8):13811395. doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Riebe D, Ehrman JK, Liguori G, Magal M. (eds.) ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Philadelphia, PA: Wolters Kluwer Health; 2018.

    • Search Google Scholar
    • Export Citation
  • 27.

    Sugarman R. IntegNeuroTM User Manual Version 3. New South Wales, Australia: Brain Resource Company; 2007.

  • 28.

    Paul RH, Lawrence J, Williams LM, Richard CC, Cooper N, Gordon E. Preliminary validity of “Integneuro”: a new computerized battery of neurocognitive tests. Int J Neurosci. 2005;115(11):15491567. PubMed ID: 16223701 doi:10.1080/00207450590957890

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Williams LM, Simms E, Clark CR, Paul RH, Rowe D, Gordon E. The test-retest reliability of a standardized neurocognitive and neurophysiological test battery: ‘NeuroMarker’. Int J Neurosci. 2005;115(12):1605. PubMed ID: 16287629 doi:10.1080/00207450590958475

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Silverstein SM, Jaeger J, Donovan-Lepore A-M, et al. . A comparative study of the MATRICS and IntegNeuro cognitive assessment batteries. J Clin Exp Neuropsychol. 2010;32(9):937952. PubMed ID: 20455131 doi:10.1080/13803391003596496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lee PH, Macfarlane DJ, Lam T, Stewart SM. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int J Behav Nutr Phy Act. 2011;8(1):115. doi:10.1186/1479-5868-8-115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Prince SA, Adamo KB, Hamel ME, Hardt J, Gorber SC, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phy Act. 2008;5(1):56. doi:10.1186/1479-5868-5-56

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Gligoroska JP, Manchevska S. The effect of physical activity on cognition—physiological mechanisms. Mater Sociomed. 2012;24(3):198202. PubMed ID: 23678325 doi:10.5455/msm.2012.24.198-202

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kennedy G, Hardman RJ, Macpherson H, Scholey AB, Pipingas A. How does exercise reduce the rate of age-associated cognitive decline? A review of potential mechanisms. J Alz Dis. 2017;55:118. doi:10.3233/jad-160665

    • Search Google Scholar
    • Export Citation
  • 35.

    León-Latre M, Moreno-Franco B, Andrés-Esteban EM, et al. . Sedentary lifestyle and its relation to cardiovascular risk factors, insulin resistance and inflammatory profile. Rev Esp Cardiol. 2014;67(6):449455. doi:10.1016/j.recesp.2013.10.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Sofi F, Valecchi D, Bacci D, et al. . Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Int Med. 2011;269(1):107117. doi:10.1111/j.1365-2796.2010.02281.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Erickson KI, Voss MW, Prakash RS, et al. . Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):30173022. PubMed ID: 21282661 doi:10.1073/pnas.1015950108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hillman CH, Belopolsky AV, Snook EM, Kramer AF, McAuley E. Physical activity and executive control: implications for increased cognitive health during older adulthood. Res Q Exerc Sport. 2004;75(2):176185. PubMed ID: 15209336 doi:10.1080/02701367.2004.10609149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Verburgh L, Königs M, Scherder EJA, Oosterlaan J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br J Sports Med. 2014;48(12):973979. PubMed ID: 23467962 doi:10.1136/bjsports-2012-091441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Lin J, Wang K, Chen Z, et al. . Associations between objectively measured physical activity and executive functioning in young adults. Percept Mot Skill. 2018;125(2):278288. doi:10.1177/0031512517745438

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Salas-Gomez D, Fernandez-Gorgojo M, Pozueta A, et al. . Physical activity is associated with better executive function in university students. Front Hum Neurosci. 2020;14:11. PubMed ID: 32132908 doi:10.3389/fnhum.2020.00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Celis-Morales CA, Perez-Bravo F, Ibanez L, Salas C, Bailey ME, Gill JM. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. PLoS One. 2012;7(5):e36345. PubMed ID: 22590532 doi:10.1371/journal.pone.0036345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 131 131 131
Full Text Views 17 17 17
PDF Downloads 24 24 24