Relative Handgrip Strength and Incidence of Hypertension: A Case-Cohort Study From Ravansar Non-Communicable Diseases Cohort

in Journal of Physical Activity and Health

Click name to view affiliation

Farid NajafiResearch Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Search for other papers by Farid Najafi in
Current site
Google Scholar
PubMed
Close
,
Mitra DarbandiResearch Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

Search for other papers by Mitra Darbandi in
Current site
Google Scholar
PubMed
Close
*
,
Shahab RezaeianResearch Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

Search for other papers by Shahab Rezaeian in
Current site
Google Scholar
PubMed
Close
,
Behrooz HamzehResearch Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

Search for other papers by Behrooz Hamzeh in
Current site
Google Scholar
PubMed
Close
,
Mehdi MoradinazarResearch Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran

Search for other papers by Mehdi Moradinazar in
Current site
Google Scholar
PubMed
Close
,
Ebrahim ShakibaBehavioural Diseases Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Search for other papers by Ebrahim Shakiba in
Current site
Google Scholar
PubMed
Close
, and
Yahya PasdarResearch Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
Cardiovascular Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Search for other papers by Yahya Pasdar in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: The present study assessed the association between relative handgrip strength (RHGS) and hypertension incidence in healthy adults. Methods: We performed a case-cohort study on 3784 participants from Ravansar Non-Communicable Diseases cohort study. The absolute HGS was measured using a digital dynamometer. Hypertension was defined as systolic/diastolic blood pressure ≥140/90 mm Hg and/or use of antihypertensive medications. Cox regression analysis was utilized to estimate hazard ratios of incident hypertension events with RHGS. Results: Physical activity was significantly higher in the participants with hypertension compared with nonhypertensive participants (P < .001). High-level physical activity in the subjects with lower, middle, and upper RHGS was 19.6%, 33.1%, and 47.3%, respectively (P < .001). RHGS was significantly higher in individuals with greater skeletal muscle mass (P < .001). The men and women with the upper RHGS, had an 80% (hazard ratio: 0.2; 95% confidence interval, 0.1–0.3) and 70% (hazard ratio: 0.3; 95% confidence interval, 0.1–1.2), were lower risk of hypertension compared with those with the lower RHGS, respectively. This association remains significant after adjustment for confounding factors in men. Conclusion: The study demonstrated that middle and upper levels of RHGS were associated with a lower risk of hypertension incidence. RHGS may be a protective factor for hypertension. We suggested muscle strengthening exercises.

  • Collapse
  • Expand
  • 1.

    Fisher ND, Curfman G. Hypertension—A public health challenge of global proportions. JAMA. 2018;320(17):17571759. PubMed ID: 30398584 doi:10.1001/jama.2018.16760

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223237. PubMed ID: 32024986 doi:10.1038/s41581-019-0244-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):22242260. PubMed ID: 23245609 doi:10.1016/S0140-6736(12)61766-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Eze II, Mbachu CO, Azuogu BN, et al. Effect of on-site behavioural modification intervention on lifestyle risk factors of hypertension among adult market traders in Abakaliki, Nigeria. Int Health Promot Edu. 2021;59(1):3549. doi:10.1080/14635240.2020.1713188

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ji C, Zheng L, Zhang R, Wu Q, Zhao Y. Handgrip strength is positively related to blood pressure and hypertension risk: results from the national health and nutrition examination survey. Lipids Health Dis. 2018;17(1):17. doi:10.1186/s12944-018-0734-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ostchega Y, Zhang G, Hughes JP, Nwankwo T. Factors associated with hypertension control in US adults using 2017 ACC/AHA guidelines: national health and nutrition examination survey 1999–2016. Am J Hypertens. 2018;31(8):886894. PubMed ID: 29617894 doi:10.1093/ajh/hpy047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Pescatello LS. Exercise and hypertension: recent advances in exercise prescription. Curr Hypertens Rep. 2005;7(4):281286. PubMed ID: 16061047 doi:10.1007/s11906-005-0026-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sui X, LaMonte MJ, Blair SN. Cardiorespiratory fitness and risk of nonfatal cardiovascular disease in women and men with hypertension. Am J Hypertens. 2007;20(6):608615. PubMed ID: 17531916 doi:10.1016/j.amjhyper.2007.01.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lee J-A. Relationship between grip strength and prevalence of hypertension in Korean adults: the Sixth Korea national health and nutrition examination survey (2015). J Korean Acad Kinesiol. 2017;19(3):5360. doi:10.15758/jkak.2017.19.3.53

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Sui X, Hooker SP, Lee I-M, et al. A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women. Diabetes care. 2008;31(3):550555. PubMed ID: 18070999 doi:10.2337/dc07-1870

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475482. PubMed ID: 16960159 doi:10.1093/ajcn/84.3.475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Gubelmann C, Vollenweider P, Marques-Vidal P. Association of grip strength with cardiovascular risk markers. Eur J Prev Cardiol. 2017;24(5):514521. PubMed ID: 27885059 doi:10.1177/2047487316680695

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dolan E, Thijs L, Li Y, et al. Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin outcome study. Hypertension. 2006;47(3):365370. PubMed ID: 16432047 doi:10.1161/01.HYP.0000200699.74641.c5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wang Y, Lee D-c, Brellenthin AG, et al. Association of muscular strength and incidence of type 2 diabetes. Mayo Clin Proc. 2019;94(4):643651. PubMed ID: 30871784 doi:10.1016/j.mayocp.2018.08.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wong A, Kwak Y-S, Scott SD, et al. The effects of swimming training on arterial function, muscular strength, and cardiorespiratory capacity in postmenopausal women with stage 2 hypertension. Menopause. 2019;26(6):653658. doi:10.1097/GME.0000000000001288

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Lawman HG, Troiano RP, Perna FM, Wang C-Y, Fryar CD, Ogden CL. Associations of relative handgrip strength and cardiovascular disease biomarkers in US adults, 2011–2012. Am J Prev Med. 2016;50(6):677683. PubMed ID: 26689977 doi:10.1016/j.amepre.2015.10.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Keevil VL, Khaw K-T. Overadjustment in regression analyses: considerations when evaluating relationships between body mass index, muscle strength, and body size. J Gerontol A Biol Sci Med Sci. 2014;69(5):616617. PubMed ID: 24300030 doi:10.1093/gerona/glt186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bennie JA, Lee D-c, Brellenthin AG, De Cocker K. Muscle-strengthening exercise and prevalent hypertension among 1.5 million adults: a little is better than none. J Hypertens. 2020;38(8):14661473. PubMed ID: 32102048 doi:10.1097/HJH.0000000000002415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Han TS, Al‐Gindan YY, Govan L, Hankey CR, Lean ME. Associations of body fat and skeletal muscle with hypertension. J Clin Hypertens. 2019;21(2):230238. doi:10.1111/jch.13456

    • Search Google Scholar
    • Export Citation
  • 20.

    González-Saiz L, Fiuza-Luces C, Sanchis-Gomar F, et al. Benefits of skeletal-muscle exercise training in pulmonary arterial hypertension: the WHOLEi+ 12 trial. Int J Cardiol. 2017;231:277283. PubMed ID: 28189191 doi:10.1016/j.ijcard.2016.12.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pasdar Y, Najafi F, Moradinazar M, et al. Cohort profile: ravansar non-communicable disease cohort study: the first cohort study in a Kurdish population. Int J Epidemiol. 2019;48(3):682683. PubMed ID: 30753701 doi:10.1093/ije/dyy296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Dong B, Li Q, Zhang T, et al. Population genetic polymorphism of skeletal muscle strength related genes in five ethnic minorities in North China. Front Genet. 2021;12:756802. PubMed ID: 34745225 doi:10.3389/fgene.2021.756802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Jensen B, Moritoyo T, Kaufer-Horwitz M, et al. Ethnic differences in fat and muscle mass and their implication for interpretation of bioelectrical impedance vector analysis. Appl Physiol, Nutr, Metab. 2019;44(6):619626. doi:10.1139/apnm-2018-0276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Chan GC, Teo BW, Tay JC, et al. Hypertension in a multi‐ethnic Asian population of Singapore. J Clin Hypertens. 2021;23(3):522528. doi:10.1111/jch.14140

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Forde AT, Lewis TT, Kershaw KN, Bellamy SL, Diez Roux AV. Perceived discrimination and hypertension risk among participants in the multi‐ethnic study of atherosclerosis. J Am Heart Assoc. 2021;10(5):e019541. PubMed ID: 33596667 doi:10.1161/JAHA.120.019541

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Maslow AL, Sui X, Colabianchi N, Hussey J, Blair SN. Muscular strength and incident hypertension in normotensive and prehypertensive men. Med Sci Sports Exerc. 2010;42(2):288295. PubMed ID: 19927030 doi:10.1249/MSS.0b013e3181b2f0a4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Artero EG, Lee D-c, Ruiz JR, et al. A prospective study of muscular strength and all-cause mortality in men with hypertension. J Am Coll Cardiol. 2011;57(18):18311837. PubMed ID: 21527158 doi:10.1016/j.jacc.2010.12.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Li D, Guo G, Xia L, et al. Relative handgrip strength is inversely associated with metabolic profile and metabolic disease in the general population in China. Front Physiol. 2018;9:59. PubMed ID: 29459831 doi:10.3389/fphys.2018.00059

    • Search Google Scholar
    • Export Citation
  • 29.

    Arija V, Villalobos F, Pedret R, et al. Physical activity, cardiovascular health, quality of life and blood pressure control in hypertensive subjects: randomized clinical trial. Health Qual Life Outcomes. 2018;16(1):184. PubMed ID: 30217193 doi:10.1186/s12955-018-1008-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Lim J, Pearman ME, Park W, Alkatan M, Machin DR, Tanaka H. Impact of blood pressure perturbations on arterial stiffness. Am J Physiol Regul Integr Comp Physiol. 2015;309(12):R1540R1545. PubMed ID: 26468262 doi:10.1152/ajpregu.00368.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Payne RA, Wilkinson IB, Webb DJ. Arterial stiffness and hypertension: emerging concepts. Hypertension. 2010;55(1):914. PubMed ID: 19948990 doi:10.1161/HYPERTENSIONAHA.107.090464

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Brandão AA, Amodeo C, Alcântara C, et al. I Luso-Brazilian positioning on central arterial pressure. Arq Bras Cardiol. 2017;108(2):100108. PubMed ID: 28327876 doi:10.5935/abc.20170011

    • Search Google Scholar
    • Export Citation
  • 33.

    Lima-Junior Dd, Farah BQ, Germano-Soares AH, et al. Association between handgrip strength and vascular function in patients with hypertension. Clin Exp Hypertens. 2019;41(7):692695. doi:10.1080/10641963.2018.1539096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Osei-Yeboah J, Owiredu W, Norgbe G, et al. Physical activity pattern and its association with glycaemic and blood pressure control among people living with diabetes (PLWD) in the Ho municipality, Ghana. Ethiop J Health Sci. 2019;29(1):819830. PubMed ID: 30700949 doi:10.4314/ejhs.v29i1.3

    • Search Google Scholar
    • Export Citation
  • 35.

    McGowan CL, Levy AS, Millar PJ, et al. Acute vascular responses to isometric handgrip exercise and effects of training in persons medicated for hypertension. Am J Physiol Heart Circ Physiol. 2006;291(4):H1797H1802. PubMed ID: 16648182 doi:10.1152/ajpheart.01113.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Watanabe K, Ichinose M, Tahara R, Nishiyasu T. Individual differences in cardiac and vascular components of the pressor response to isometric handgrip exercise in humans. Am J Physiol Heart Circ Physiol. 2014;306(2):H251H260. PubMed ID: 24213616 doi:10.1152/ajpheart.00699.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Perna FM, Coa K, Troiano RP, et al. Muscular grip strength estimates of the US population from the national health and nutrition examination survey 2011–2012. J Strength Cond Res. 2016;30(3):867874. PubMed ID: 26196662 doi:10.1519/JSC.0000000000001104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hao G, Chen H, Ying Y, Wu M, Yang G, Jing C. The relative handgrip strength and risk of cardiometabolic disorders: a prospective study. Front Physiol. 2020;11:719. PubMed ID: 32714207 doi:10.3389/fphys.2020.00719

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 383 383 125
Full Text Views 543 543 16
PDF Downloads 301 301 10