Associations Between Parent’s Perceived Neighborhood Environment and Objectively Measured Walkability With Their Children’s Physical Activity

in Journal of Physical Activity and Health

Click name to view affiliation

Stephen HunterFaculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada

Search for other papers by Stephen Hunter in
Current site
Google Scholar
PubMed
Close
,
John C. SpenceFaculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada

Search for other papers by John C. Spence in
Current site
Google Scholar
PubMed
Close
,
Scott T. LeatherdaleSchool of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada

Search for other papers by Scott T. Leatherdale in
Current site
Google Scholar
PubMed
Close
, and
Valerie CarsonFaculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada

Search for other papers by Valerie Carson in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Background: Neighborhoods are one setting to promote children’s physical activity. This study examined associations between neighborhood features and children’s physical activity and whether season or socioeconomic status modified these associations. Methods: Parents (n = 641) of children aged 6–10 years completed the Neighborhood Environment Walkability Scale—Abbreviated. Walkability was objectively measured at 400, 800, and 1200 m around the centroid of participants’ postal codes. Children’s physical activity was measured via StepsCount pedometers and parental report. Regression analyses were performed with interaction terms for season and socioeconomic status. Multiple imputation was used primarily to triangulate the results for children with missing steps data (n = 192). Results: Higher perceived residential density and traffic hazards were significantly associated with lower squareroot transformed parental-reported physical activity and steps per day, respectively. Higher perceived aesthetics was associated with higher squareroot transformed parental-reported physical activity. Socioeconomic status modified 2 associations though they were not significant upon stratification. During winter months, better perceived infrastructure and safety for walking was associated with higher squareroot transformed parental-reported physical activity. No other significant associations emerged. Conclusion: Residential density, traffic hazards, and aesthetics are important for children’s physical activity. Few associations were modified by socioeconomic status or season. The need for objective and subjective measures of the neighborhood environment and children’s physical activity is apparent.

  • Collapse
  • Expand
  • 1.

    Aubert S, Barnes JD, Abdeta C, et al. Global matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(suppl 2):S251S273. PubMed ID: 30475137 doi:10.1123/jpah.2018-0472

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bull FC, Al-Ansari SS, Biddle S, et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):14511462. PubMed ID: 33239350 doi:10.1136/bjsports-2020-102955

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Telama R, Yang X, Leskinen E, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955962. PubMed ID: 24121247 doi:10.1249/MSS.0000000000000181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major noncommunicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219229. PubMed ID: 22818936 doi:10.1016/S0140-6736(12)61031-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Laine J, Kuvaja-Köllner V, Pietilä E, et al. Cost-effectiveness of population-level physical activity interventions: a systematic review. Am J Health Promot. 2014;29(2):7180. PubMed ID: 25361461 doi:10.4278/ajhp.131210-LIT-622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27(1):297322. PubMed ID: 16533119 doi:10.1146/annurev.publhealth.27.021405.102100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Carlin A, Perchoux C, Puggina A, et al. A life course examination of the physical environmental determinants of physical activity behaviour: a “determinants of diet and physical activity” (DEDIPAC) umbrella systematic literature review. PLoS One. 2017;12(8):e0182083. PubMed ID: 28787023 doi:10.1371/journal.pone.0182083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth: a review. Am J Prev Med. 2011;41(4):442455. PubMed ID: 21961474 doi:10.1016/j.amepre.2011.06.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Spence JC, Lee RL. Toward a comprehensive model of physical activity. Psychol Sport Exerc. 2003;4(1):724. doi:10.1016/S1469-0292(02)00014-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Sallis JF, Owen N. Ecological models of health behavior. In: Glanz K, Rimer BK, Viswanath K, eds. Health Behavior: Theory, Research, and Practice. 5th ed. JosseyBass; 2015: 4364.

    • Search Google Scholar
    • Export Citation
  • 11.

    Gubbels JS, Van Kann DH, de Vries NK, Thijs C, Kremers SP. The next step in health behavior research: the need for ecological moderation analyses—An application to diet and physical activity at childcare. Int J Behav Nutr Phys Act. 2014;11(1):52. PubMed ID: 24742167 doi:10.1186/1479-5868-11-52

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Carson V, Spence JC. Seasonal variation in physical activity among children and adolescents: a review. Pediatr Exerc Sci. 2010;22(1):8192. PubMed ID: 20332542 doi:10.1123/pes.22.1.81

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Welk GJ. The youth physical activity promotion model: a conceptual bridge between theory and practice. Quest. 1999;51(1):523. doi:10.1080/00336297.1999.10484297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    D’Haese S, Van Dyck D, De Bourdeaudhuij I, et al. The association between objective walkability, neighborhood socio-economic status, and physical activity in Belgian children. Int J Behav Nutr Phys Act. 2014;11(1):565. doi:10.1186/s12966-014-0104-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Molina-García J, Queralt A. Neighborhood built environment and socioeconomic status in relation to active commuting to school in children. J Phys Act Health. 2017;14(10):761765. PubMed ID: 28513318 doi:10.1123/jpah.2017-0033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hunter S, Carson V, Timperio A, Salmon J, Carver A, Veitch J. Moderators of parents’ perceptions of the neighborhood environment and children’s physical activity, time outside, and screen time. J Phys Act Health. 2020;17(5):557565 PubMed ID: 32294621 doi:10.1123/jpah.2019-0433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Nordbø E, Nordh H, Raanaas RK, Aamodt G. Promoting activity participation and well-being among children and adolescents: a systematic review of neighborhood built-environment determinants. JBI Evid Synth. 2020;18(3):370458. PubMed ID: 32197008 doi:10.11124/JBISRIR-D-19-00051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Stearns JA, Rhodes RE, Ball GD, et al. A cross-sectional study of the relationship between parents’ and children’s physical activity. BMC Public Health. 2016;16(1):1129. PubMed ID: 27793153 doi:10.1186/s12889-016-3793-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Potter M, Spence JC, Boulé NG, Stearns JA, Carson V. Associations between physical activity, screen time, and fitness among 6- to 10-year-old children living in Edmonton, Canada. Appl Physiol Nutr Metab. 2017;42(5):487494. PubMed ID: 28177727 doi:10.1139/apnm-2016-0419

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cerin E, Saelens BE, Sallis JF, Frank LD. Neighborhood environment walkability scale: validity and development of a short form. Med Sci Sports Exerc. 2006;38(9):16821691. PubMed ID: 16960531 doi:10.1249/01.mss.0000227639.83607.4d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Forsyth A, Van Riper D, Larson N, Wall M, Neumark-Sztainer D. Creating a replicable, valid cross-platform buffering technique: the sausage network buffer for measuring food and physical activity built environments. Int J Health Geogr. 2012;11(1):14. doi:10.1186/1476-072X-11-14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Smith M, Cui J, Ikeda E, et al. Objective measurement of children’s physical activity geographies: a systematic search and scoping review. Health Place. 2021;67:102489. PubMed ID: 33302122 doi:10.1016/j.healthplace.2020.102489

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bringolf-Isler B, Grize L, Mäder U, Ruch N, Sennhauser FH, Braun-Fahrländer C. Built environment, parents’ perception, and children’s vigorous outdoor play. Prev Med. 2010;50(5–6):251256. PubMed ID: 20346370 doi:10.1016/j.ypmed.2010.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Thornton L, Pearce J, Kavanagh A. Using geographic information systems (GIS) to assess the role of the built environment in influencing obesity: a glossary. Int J Behav Nutr Phys Act. 2011;8(1):71. doi:10.1186/1479-5868-8-71

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Frank LD, Sallis JF, Saelens BE, et al. The development of a walkability index: application to the neighborhood quality of life study. Br J Sports Med. 2010;44(13):924933. PubMed ID: 19406732 doi:10.1136/bjsm.2009.058701

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Beets MW, Patton MM, Edwards S. The accuracy of pedometer steps and time during walking in children. Med Sci Sports Exerc. 2005;37(3):513520. PubMed ID: 15741852 doi:10.1249/01.MSS.0000155395.49960.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Telford A, Salmon J, Jolley D, Crawford D. Reliability and validity of physical activity questionnaires for children: the children’s leisure activities study survey (CLASS). Pediatr Exerc Sci. 2004;16(1):6478. doi:10.1123/pes.16.1.64

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Chinapaw MJ, Mokkink LB, van Poppel MN, van Mechelen W, Terwee CB. Physical activity questionnaires for youth: a systematic review of measurement properties. Sports Med. 2010;40(7):539563. PubMed ID: 20545380 doi:10.2165/11530770-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Carson V, Spence JC, Cutumisu N, Boule N, Edwards J. Seasonal variation in physical activity among preschool children in a northern Canadian city. Res Q Exerc Sport. 2010;81(4):392399. PubMed ID: 21268462 doi:10.1080/02701367.2010.10599699

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Tabachnick BG, Fidell LS. Using Multivariate Statistics. Vol 5. Pearson/Allyn and Bacon; 2007

  • 31.

    Graham JW, Olchowski AE, Gilreath TD. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci. 2007;8(3):206213. PubMed ID: 17549635 doi:10.1007/s11121-007-0070-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Pedersen AB, Mikkelsen EM, Cronin-Fenton D, et al. Missing data and multiple imputation in clinical epidemiological research. Clin Epidemiol. 2017;9:157166. PubMed ID: 28352203 doi:10.2147/CLEP.S129785

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Aarts MJ, de Vries SI, van Oers HA, Schuit AJ. Outdoor play among children in relation to neighborhood characteristics: a cross-sectional neighborhood observation study. Int J Behav Nutr Phys Act. 2012;9(1):98. doi:10.1186/1479-5868-9-98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    De Meester F, Van Dyck D, De Bourdeaudhuij I, Cardon G. Parental perceived neighborhood attributes: associations with active transport and physical activity among 10–12 year old children and the mediating role of independent mobility. BMC Public Health. 2014;14(1):13161339. doi:10.1186/1471-2458-14-631

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Kowaleski-Jones L, Fan JX, Ming W, Hanson H, Wen M. Neighborhood context and youth physical activity: differential associations by gender and age. Am J Health Promot. 2017;31(5):426434. PubMed ID: 27638934 doi:10.1177/0890117116667353

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Holt NL, Spence JC, Sehn ZL, Cutumisu N. Neighborhood and developmental differences in children’s perceptions of opportunities for play and physical activity. Health Place. 2008;14(1):214. PubMed ID: 17498999 doi:10.1016/j.healthplace.2007.03.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Corder K, Sallis JF, Crespo NC, Elder JP. Active children use more locations for physical activity. Health Place. 2011;17(4):911919. PubMed ID: 21550836 doi:10.1016/j.healthplace.2011.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Timperio A, Reid J, Veitch J. Playability: built and social environment features that promote physical activity within children. Curr Obes Rep. 2015;4(4):460476. PubMed ID: 26399255 doi:10.1007/s13679-015-0178-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Uys M, Broyles ST, Draper CE, et al. Perceived and objective neighborhood support for outside of school physical activity in South African children. BMC Public Health. 2016;16(1):462. doi:10.1186/s12889-016-2860-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    McKenzie TL, Moody JS, Carlson JA, Lopez NV, Elder JP. Neighborhood income matters: disparities in community recreation facilities, amenities, and programs. J Park Recreat Admi. 2013;31(4):1222. PubMed ID: 25006598

    • Search Google Scholar
    • Export Citation
  • 41.

    Franzini L, Taylor W, Elliott MN, et al. Neighborhood characteristics favorable to outdoor physical activity: disparities by socioeconomic and racial/ethnic composition. Health Place. 2010;16(2):267274. PubMed ID: 19896408 doi:10.1016/j.healthplace.2009.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Holt NL, Cunningham C-T, Sehn ZL, Spence JC, Newton AS, Ball GDC. Neighborhood physical activity opportunities for inner-city children and youth. Health Place. 2009;15(4):10221028. PubMed ID: 19457701 doi:10.1016/j.healthplace.2009.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Koschinsky J, Talen E, Alfonzo M, Lee S. How walkable is walker’s paradise? Environ Plan B Urban Anal City Sci. 2017;44(2):343363. doi:10.1177/0265813515625641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Montemurro GR, Berry TR, Spence JC, Nykiforuk C, Blanchard C, Cutumisu N. “Walkable by willpower:” resident perceptions of neighbourhood environments. Health Place. 2011;17(4):895901. PubMed ID: 21600835 doi:10.1016/j.healthplace.2011.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Millstein RA, Cain KL, Sallis JF, et al. Development, scoring, and reliability of the microscale audit of pedestrian streetscapes (MAPS). BMC Public Health. 2013;13(1):403. doi:10.1186/1471-2458-13-403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Turrisi TB, Bittel KM, West AB, et al. Seasons, weather, and device-measured movement behaviors: a scoping review from 2006 to 2020. Int J Behav Nutr Phys Act. 2021;18(1):24. PubMed ID: 33541375 doi:10.1186/s12966-021-01091-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Craig P, Cooper C, Gunnell D, et al. Using natural experiments to evaluate population health interventions: new medical research council guidance. J Epidemiol Community Health. 2012;66(12):11821186. PubMed ID: 22577181 doi:10.1136/jech-2011-200375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Rhodes RE, Quinlan A. Predictors of physical activity change among adults using observational designs. Sports Med. 2015;45(3):423441. PubMed ID: 25312706 doi:10.1007/s40279-014-0275-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Giles-Corti B, Timperio A, Bull F, Pikora T. Understanding physical activity environmental correlates: increased specificity for ecological models. Exerc Sport Sci Rev. 2005;33(4):175181. PubMed ID: 16239834 doi:10.1097/00003677-200510000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Rosenberg D, Ding D, Sallis JF, et al. Neighborhood environment walkability scale for youth (NEWS-Y): reliability and relationship with physical activity. Prev Med. 2009;49(2–3):213218. PubMed ID: 19632263 doi:10.1016/j.ypmed.2009.07.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    D’Haese S, Van Dyck D, De Bourdeaudhuij I, Deforche B, Cardon G. The association between the parental perception of the physical neighborhood environment and children’s location-specific physical activity. BMC Public Health. 2015;15(1):565. doi:10.1186/s12889-015-1937-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Borghese MM, Janssen I. Development of a measurement approach to assess time children participate in organized sport, active travel, outdoor active play, and curriculum-based physical activity. BMC Public Health. 2018;18(1):396. PubMed ID: 29566665 doi:10.1186/s12889-018-5268-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Jankowska MM, Schipperijn J, Kerr J. A framework for using GPS data in physical activity and sedentary behavior studies. Exerc Sport Sci Rev. 2015;43(1):4856. PubMed ID: 25390297 doi:10.1249/JES.0000000000000035

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 334 334 131
Full Text Views 272 272 6
PDF Downloads 208 208 11