Changes in 24-Hour Movement Behaviors From Early to Late Pregnancy in Individuals With Prepregnancy Overweight or Obesity

in Journal of Physical Activity and Health

Click name to view affiliation

Sylvia E. BadonKaiser Permanente Northern California Division of Research, Oakland, CA, USA

Search for other papers by Sylvia E. Badon in
Current site
Google Scholar
PubMed
Close
*
,
Assiamira FerraraKaiser Permanente Northern California Division of Research, Oakland, CA, USA

Search for other papers by Assiamira Ferrara in
Current site
Google Scholar
PubMed
Close
,
Kelley Pettee GabrielThe University of Alabama at Birmingham, Birmingham, AL, USA

Search for other papers by Kelley Pettee Gabriel in
Current site
Google Scholar
PubMed
Close
,
Lyndsay A. AvalosKaiser Permanente Northern California Division of Research, Oakland, CA, USA

Search for other papers by Lyndsay A. Avalos in
Current site
Google Scholar
PubMed
Close
, and
Monique M. HeddersonKaiser Permanente Northern California Division of Research, Oakland, CA, USA

Search for other papers by Monique M. Hedderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Understanding how sleep, sedentary behavior (SED), and physical activity (PA) (24-h movement profile) changes across pregnancy in individuals with prepregnancy overweight or obesity and how parity (previous births) impacts these changes can help inform interventions. Methods: In 155 participants, movement was measured using wrist-worn accelerometers, and sleep was self-reported in early (8–15 wk) and late (29–38 wk) pregnancy. The 24-hour movement profiles were analyzed using compositional analyses. Results: Nulliparous participants (no previous births) spent 33.95%, 38.14%, 25.32%, and 2.58% of the 24-hour day in early pregnancy in sleep, SED, light-intensity PA, and moderate/vigorous-intensity PA, respectively. Multiparous participants (≥1 previous birth) spent 2.50 percentage points less in SED (mean log-ratio difference = −0.068; 95% confidence interval [CI], −0.129 to −0.009) and 2.73 percentage points more in light-intensity PA (mean log-ratio difference = 0.102; 95% CI, 0.035 to 0.180). From early to late pregnancy, participants decreased the proportion of the 24-hour day spent asleep by 1.67 percentage points (mean log-ratio difference = −0.050; 95% CI, −0.092 to −0.011) and increased light-intensity PA by 1.56 percentage points (mean log-ratio difference = 0.057; 95% CI, 0.003 to 0.108), with no change in other behaviors. Conclusions: Nulliparous and multiparous individuals with prepregnancy overweight or obesity both had high levels of SED, with no change across pregnancy, and may require interventions to reduce  SED.

Supplementary Materials

    • Supplementary Figure S1 (PDF 186 KB)
    • Supplementary Figure S2 (PDF 224 KB)
    • Supplementary Table S1 (PDF 198 KB)
    • Supplementary Table S2 (PDF 184 KB)
    • Supplementary Table S3 (PDF 190 KB)
    • Supplementary Table S4 (PDF 184 KB)
  • Collapse
  • Expand
  • 1.

    Dipietro L, Evenson KR, Bloodgood B, et al. Benefits of physical activity during pregnancy and postpartum: an umbrella review. Med Sci Sport Exerc. 2019;51(6):12921302. doi:10.1249/mss.0000000000001941

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Sweet L, Arjyal S, Kuller JA, Dotters-Katz S. A review of sleep architecture and sleep changes during pregnancy. Obstet Gynecol Surv. 2020;75(4):253262. PubMed ID: 32324251 doi:10.1097/OGX.0000000000000770

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hesketh KR, Evenson KR. Prevalence of U.S. pregnant women meeting 2015 ACOG physical activity guidelines. Am J Prev Med. 2016;51(3):e87e89. PubMed ID: 27544437 doi:10.1016/j.amepre.2016.05.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Francis EC, Zhang L, Witrick B, Chen L. Health behaviors of American pregnant women: a cross-sectional analysis of NHANES 2007–2014. J Public Health. 2021;43(1):131138. doi:10.1093/pubmed/fdz117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Santo EC, Forbes PW, Oken E, Belfort MB. Determinants of physical activity frequency and provider advice during pregnancy. BMC Pregnancy Childbirth. 2017;17(1):286. PubMed ID: 28870169 doi:10.1186/s12884-017-1460-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Guinhouya BC, Bisson M, Dubois L, et al. Body weight status and sleep disturbances during pregnancy: does adherence to gestational weight gain guidelines matter? J Womens Health. 2019;28(4):535543. doi:10.1089/jwh.2017.6892

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Marchi J, Berg M, Dencker A, Olander EK, Begley C. Risks associated with obesity in pregnancy, for the mother and baby: a systematic review of reviews. Obes Rev. 2015;16(8):621638. doi:10.1111/obr.12288

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Coll CV, Domingues MR, Gonçalves H, Bertoldi AD. Perceived barriers to leisure-time physical activity during pregnancy: a literature review of quantitative and qualitative evidence. J Sci Med Sport. 2017;20(1):1725. doi:10.1016/j.jsams.2016.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Badon SE, Iturralde E, Nkemere L, Nance N, Avalos LA. Perceived barriers and motivators for physical activity in women with perinatal depression. J Phys Act Health. 2021;18(7):801810. PubMed ID: 33984835 doi:10.1123/jpah.2020-0743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Borodulin K, Evenson KR, Monda K, Wen F, Herring AH, Dole N. Physical activity and sleep among pregnant women. Paediatr Perinat Epidemiol. 2010;24(1):4552. PubMed ID: 20078829 doi:10.1111/j.1365-3016.2009.01081.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Brown SD, Hedderson MM, Ehrlich SF, et al. Gestational weight gain and optimal wellness (GLOW): rationale and methods for a randomized controlled trial of a lifestyle intervention among pregnant women with overweight or obesity. BMC Pregnancy Childbirth. 2019;19(1):145. PubMed ID: 31039753 doi:10.1186/s12884-019-2293-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Ferrara A, Hedderson MM, Brown SD, et al. A telehealth lifestyle intervention to reduce excess gestational weight gain in pregnant women with overweight or obesity (GLOW): a randomised, parallel-group, controlled trial. Lancet Diabetes Endocrinol. 2020;8(6):490500. PubMed ID: 32445736 doi:10.1016/S2213-8587(20)30107-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Hesketh KR, Evenson KR, Stroo M, Clancy SM, Ostbye T, Benjamin-Neelon SE. Physical activity and sedentary behavior during pregnancy and postpartum, measured using hip and wrist-worn accelerometers. Prev Med Rep. 2018;10:337345. PubMed ID: 29868389 doi:10.1016/j.pmedr.2018.04.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Clevenger KA, Pfeiffer KA, Montoye AHK. Cross-generational comparability of hip- and wrist-worn actiGraph GT3X+, wGT3X-BT, and GT9X accelerometers during free-living in adults. J Sports Sci. 2020;38(24):27942802. PubMed ID: 32755446 doi:10.1080/02640414.2020.1801320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Zak RS, Zitser J, Jones HJ, Gilliss CL, Lee KA. Sleep self-report and actigraphy measures in healthy midlife women: validity of the pittsburgh sleep quality index. J Womens Health. 2022;31(7):965973. doi:10.1089/jwh.2021.0328

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Choi L, Ward SC, Schnelle JF, Buchowski MS. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44(10):20092016. PubMed ID: 22525772 doi:10.1249/MSS.0b013e318258cb36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ehrlich SF, Casteel AJ, Crouter SE, et al. Alternative wear-time estimation methods compared to traditional diary logs for wrist-worn Actigraph accelerometers in pregnant women. J Meas Phys Behav. 2020;3(2):110117. PubMed ID: 33997656 doi:10.1123/jmpb.2019-0049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    PhysicalActivity: Process Accelerometer Data for Physical Activity Measurement. R package version 0.2-4; 2021. https://CRAN.R-project.org/package=PhysicalActivity

    • Search Google Scholar
    • Export Citation
  • 20.

    Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from wrist activity. Sleep. 1992;15(5):461469. PubMed ID: 1455130 doi:10.1093/sleep/15.5.461

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kamada M, Shiroma EJ, Harris TB, Lee IM. Comparison of physical activity assessed using hip- and wrist-worn accelerometers. Gait Posture. 2016;44:2328. PubMed ID: 27004628 doi:10.1016/j.gaitpost.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Chastin SF, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984. PubMed ID: 26461112 doi:10.1371/journal.pone.0139984

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Dumuid D, Pedisic Z, Stanford TE, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2017;28(3):846857. doi:10.1177/0962280217737805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. 2021. http://www.R-project.org/

  • 26.

    Wickham H, Averick M, Bryan J, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686. doi:10.21105/joss.01686

  • 27.

    CoDaPack. 2021. http://www.compositionaldata.com/codapack.php

  • 28.

    Hamilton N, Ferry M. ggtern: ternary diagrams using ggplot2. J Stat Softw. 2018;87(3):117.

  • 29.

    Compositions: Compositional Data Analysis. R package version 2.0-2; 2021. https://CRAN.R-project.org/package=compositions

  • 30.

    MANOVA.RM: Resampling-Based Analysis of Multivariate Data and Repeated Measures Designs. R package version 0.5.3; 2022. https://CRAN.R-project.org/package=MANOVA.RM

    • Search Google Scholar
    • Export Citation
  • 31.

    Martin-Fernandez JA, Daunis IEJ, Mateu-Figueras G. On the interpretation of differences between groups for compositional data. SORT-Stat Oper Res T. 2015;39(2):231252.

    • Search Google Scholar
    • Export Citation
  • 32.

    resample: Resampling Functions. R package version 0.4; 2015. https://CRAN.R-project.org/package=resample

  • 33.

    Chiuve SE, Fung TT, Rimm EB, et al. Alternative dietary indices both strongly predict risk of chronic disease. J Nutr. 2012;142(6):10091018. PubMed ID: 22513989 doi:10.3945/jn.111.157222

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Kroenke K, Strine TW, Spitzer RL, Williams JB, Berry JT, Mokdad AH. The PHQ-8 as a measure of current depression in the general population. J Affect Disord. 2009;114(1–3):163173. PubMed ID: 18752852 doi:10.1016/j.jad.2008.06.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Rhodes RE, Blanchard CM, Benoit C, et al. Physical activity and sedentary behavior across 12 months in cohort samples of couples without children, expecting their first child, and expecting their second child. J Behav Med. 2014;37(3):533542. PubMed ID: 23606310 doi:10.1007/s10865-013-9508-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Chasan-Taber L, Schmidt MD, Roberts DE, Hosmer D, Markenson G, Freedson PS. Development and validation of a pregnancy physical activity questionnaire. Med Sci Sports Exerc. 2004;36(10):17501760. PubMed ID: 15595297 doi:10.1249/01.MSS.0000142303.49306.0D

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Izci-Balserak B, Keenan BT, Corbitt C, Staley B, Perlis M, Pien GW. Changes in sleep characteristics and breathing parameters during sleep in early and late pregnancy. J Clin Sleep Med. 2018;14(7):11611168. doi:10.5664/jcsm.7216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vietheer A, Kiserud T, Lie RT, Haaland Ø A, Kessler J. Sleep and physical activity from before conception to the end of pregnancy in healthy women: a longitudinal actigraphy study. Sleep Med. 2021;83:8998. PubMed ID: 33991895 doi:10.1016/j.sleep.2021.04.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Tsai SY, Lee PL, Lin JW, Lee CN. Cross-sectional and longitudinal associations between sleep and health-related quality of life in pregnant women: a prospective observational study. Int J Nurs Stud. 2016;56:4553. PubMed ID: 26803171 doi:10.1016/j.ijnurstu.2016.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Barone Gibbs B, Jones MA, Jakicic JM, Jeyabalan A, Whitaker KM, Catov JM. Objectively measured sedentary behavior and physical activity across 3 trimesters of pregnancy: the monitoring movement and health study. J Phys Act Health. 2021;18(3):254261. PubMed ID: 33508775 doi:10.1123/jpah.2020-0398

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 594 594 70
Full Text Views 38 38 1
PDF Downloads 52 52 0