Physical Activity Type and Intensity Are Associated With Abdominal Muscle Area and Density: The Multiethnic Study of Atherosclerosis

in Journal of Physical Activity and Health
View More View Less
  • 1 Department of Movement Sciences, College of Education, Health and Human Sciences, University of Idaho, Moscow, ID, USA
  • | 2 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
  • | 3 Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
  • | 4 Department of Family Medicine and Public Health, School of Medicine, University of California San Diego, La Jolla, CA, USA
Restricted access

Background: Using data from a multiethnic cohort, the authors tested associations of multiple types and intensities of physical activity (PA) with abdominal muscle area and density. Methods: 1895 Multiethnic Study of Atherosclerosis participants (mean age 64.6 [9.6] y) completed health history and PA questionnaires and computed tomography to quantify body composition and measurements of cardiovascular and inflammatory biomarkers. Analyses included multivariable regression. Results: Compared with those not meeting PA guidelines for Americans, those meeting the guidelines had higher total abdominal muscle area (odds ratio, 95% confidence interval 1.60, 1.20 to 2.15), stability muscle area (1.68, 1.28 to 2.20), and stability muscle density (1.35, 1.03 to 1.76). After adjustment for relevant covariates, each SD increase in total moderate to vigorous PA was associated with a higher total abdominal (β, 95% confidence interval = 0.068, 0.036 to 0.173), stability (0.063, 0.027 to 0.099), and locomotor (0.069, 0.039 to 0.099) muscle area and higher locomotor muscle density (0.065, 0.022 to 0.108, P < .01). Only intentional and conditioning exercise were associated with total abdominal and stability muscle density (P < .05). Light PA and walking were not associated with muscle area or density. Conclusions: Most types of PA are positively associated with abdominal muscle area and density across functional categories, independent of relevant covariates. These results provide additional evidence for promoting PA for healthy muscle aging.

Vella (cvella@uidaho.edu) is corresponding author.

  • 1.

    Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23(6):10341047. PubMed ID: 27304505 doi:10.1016/j.cmet.2016.05.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018;8(3):a029785. doi:10.1101/cshperspect.a029785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Delmonico MJ, Harris TB, Visser M, et al. Longitudinal study of muscle strength, quality and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):15791585. PubMed ID: 19864405 doi:10.3945/ajcn.2009.28047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Miljkovic I, Kuipers AL, Cvejkus R, et al. Myosteatosis increases with aging and is associated with incident diabetes in African ancestry men. Obesity. 2016;24(2):476482. PubMed ID: 26694517 doi:10.1002/oby.21328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chodzko-Zajko WJ, Proctor DN, Singh MAF, et al. Exercise and physical activity for older adults. Med Sci Sport Exerc. 2009;41(7):15101530. doi:10.1249/MSS.0b013e3181a0c95c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Goodpaster BH, Chomentowski P, Ward BK, et al. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol. 2008;105(5):14981503. PubMed ID: 18818386 doi:10.1152/japplphysiol.90425.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impace of age, inactivity and exercise. J Nutr Heal Aging. 2010;14(5):362366. doi:10.1007/s12603-010-0081-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42(2):5361. PubMed ID: 24508740 doi:10.1249/JES.0000000000000007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Scott D, Johansson J, McMillan LB, Ebeling PR, Nordstrom A, Nordstrom P. Mid-calf skeletal muscle density and its associations with physical activity, bone health and incident 12-month falls in older adults: the healthy ageing initiative. Bone. 2019;120(July 2018):446451. doi:10.1016/j.bone.2018.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev. 1999;107(2):123136. PubMed ID: 10220041 doi:10.1016/S0047-6374(98)00130-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nishiguchi S, Yamada M, Kajiwara Y, et al. Effect of physical activity at midlife on skeletal muscle mass in old age in community-dwelling older women: a cross-sectional study. J Clin Gerontol Geriatr. 2014;5(1):1822. doi:10.1016/j.jcgg.2013.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. 2018.

  • 13.

    Straight C, Brady A, Evans E. Sex-specific relationships of physical activity, body composition, and muscle quality with lower-extremity physical function in older men and women. Menopause. 2015;22(3):297303. PubMed ID: 25137244 doi:10.1097/GME.0000000000000313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Seo MW, Jung SW, Kim SW, et al. Effects of 16 weeks of resistance training on muscle quality and muscle growth factors in older adult women with Sarcopenia: a randomized controlled trial. Int J Environ Res Public Heal Artic Public Heal. 2021;18(13):6762. doi:10.3390/ijerph18136762

    • Search Google Scholar
    • Export Citation
  • 15.

    Rogers M, Evans W. Changes in skeletal muscle with aging: effects of exercise training. Exerc Sport Sci Rev. 1993;21(1):65102. PubMed ID: 8504850 doi:10.1249/00003677-199301000-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Reed R, Pearlmutter L, Yochum K, Meredith K, Mooradian A. The relationship between muscle mass and muscle strength in the elderly. J Am Geriatr Soc. 1991;39(6):555561. PubMed ID: 1805811 doi:10.1111/j.1532-5415.1991.tb03592.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wang L, Yin L, Zhao Y, et al. Muscle density, but not size, correlates well with muscle strength and physical performance. J Am Med Dir Assoc. 2021;22(4):751759.e2. PubMed ID: 32768372 doi:10.1016/j.jamda.2020.06.052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Vella CA, Michos ED, Sears DD, et al. Associations of sedentary behavior and abdominal muscle density: the multi-ethnic study of atherosclerosis. J Phys Act Heal. 2018;15(11):827833. doi:10.1123/jpah.2018-0028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Fragala M, Fukuda D, Stout J, et al. Muscle quality index improves with resistance exercise training in older adults. Exp Gerontol. 2014;53:16. PubMed ID: 24508922 doi:10.1016/j.exger.2014.01.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Fragala MS, Kenny AM, Kuchel GA. Muscle quality in aging: a multi-dimensional approach to muscle functioning with applications for treatment. Sports Med. 2015;45(5):641658. PubMed ID: 25655372 doi:10.1007/s40279-015-0305-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Meier NF, Lee DC. Physical activity and sarcopenia in older adults. Aging Clin Exp Res. 2020;32(9):16751687. PubMed ID: 31625078 doi:10.1007/s40520-019-01371-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002;156(9):871881. PubMed ID: 12397006 doi:10.1093/aje/kwf113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gomez-Perez SL, Haus JM, Sheean P, et al. Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed tomography image: a step-by-step guide for clinicians using National Institutes of Health Image. JPEN J Parenter Enteral Nutr. 2016;40(3):308318. PubMed ID: 26392166 doi:10.1177/0148607115604149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mourtzakis M, Prado CMM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33(5):9971006. PubMed ID: 18923576 doi:10.1139/H08-075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):23332338. PubMed ID: 15310748 doi:10.1152/japplphysiol.00744.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mongraw-Chaffin M, Golden SH, Allison MA, et al. The sex and race specific relationship between anthropometry and body fat composition determined from computed tomography: evidence from the multi-ethnic study of atherosclerosis. PLoS One. 2015;10(10):e0139559. doi:10.1371/journal.pone.0139559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ainsworth BE, Irwin ML, Addy CL, Whitt MC, Stolarczyk LM. Moderate physical activity patterns of minority women: the cross-cultural activity participation study. J Womens Health Gend Based Med. 1999;8(6):805813. PubMed ID: 10495261 doi:10.1089/152460999319129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(suppl 1):S498S516. doi:10.1097/00005768-200009001-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sakuma K, Yamaguchi A. Sarcopenic obesity and endocrinal adaptation with age. Int J Endocrinol. 2013;2013:204164. PubMed ID: 23690769 doi:10.1155/2013/204164

  • 30.

    Vella CA, Cushman M, Van Hollebeke RB, Allison MA. Associations of abdominal muscle area and radiodensity with adiponectin and leptin: the multiethnic study of atherosclerosis. Obesity. 2018;26(7):12341241. PubMed ID: 29877610 doi:10.1002/oby.22208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Van Hollebeke RB, Cushman M, Schlueter EF, Allison MA. Abdominal muscle density is inversely related to adiposity inflammatory mediators. Med Sci Sports Exerc. 2018;50(7):14951501. PubMed ID: 29401141 doi:10.1249/MSS.0000000000001570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Harber MP, Konopka AR, Douglass MD, et al. Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol. 2009;297(5):R1452R1459. doi:10.1152/ajpregu.00354.2009

    • Search Google Scholar
    • Export Citation
  • 33.

    Harber MP, Konopka AR, Undem MK, et al. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men. J Appl Physiol. 2012;113(9):14951504. PubMed ID: 22984247 doi:10.1152/japplphysiol.00786.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Schwartz RS, Shuman WP, Larson V, et al. The effect of intensive endurance exercise training on body fat distribution in young and older men. Metabolism. 1991;40(5):545551. PubMed ID: 2023542 doi:10.1016/0026-0495(91)90239-S

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Ikenaga M, Yamada Y, Kose Y, et al. Effects of a 12-week, short-interval, intermittent, low-intensity, slow-jogging program on skeletal muscle, fat infiltration, and fitness in older adults: randomized controlled trial. Eur J Appl Physiol. 2017;117(1):715. PubMed ID: 27848017 doi:10.1007/s00421-016-3493-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Laurin JL, Reid JJ, Lawrence MM, Miller BF. Long-term aerobic exercise preserves muscle mass and function with age. Curr Opin Physiol. 2019;10:7074. doi:10.1016/j.cophys.2019.04.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Zampieri S, Pietrangelo L, Loefler S, et al. Lifelong physical exercise delays age-associated skeletal muscle decline. Journals Gerontol Ser A Biol Sci Med Sci. 2015;70(2):163173. doi:10.1093/gerona/glu006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Gallagher D, Visser M, De Meersman RE, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol. 1997;83(1):229239. PubMed ID: 9216968 doi:10.1152/jappl.1997.83.1.229

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wong WW, Strizich G, Heo M, et al. Relationship between body fat and BMI in a US hispanic population-based cohort study: results from HCHS/SOL. Obesity. 2016;24(7):15611571. PubMed ID: 27184359 doi:10.1002/oby.21495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gallagher D, Kuznia P, Heshka S, et al. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr. 2005;81(4):903910. PubMed ID: 15817870 doi:10.1093/ajcn/81.4.903

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Li JB, Wu Y, Gu D, Li H, Zhang X. Prevalence and temporal trends of presarcopenia metrics and related body composition measurements from the 1999 to 2006 NHANES. BMJ Open. 2020;10(8):e034495. doi:10.1136/bmjopen-2019-034495

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kim YJ, Tamadon A, Park HT, Kim H, Ku S-Y. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia. 2016;2(3):140155. PubMed ID: 30775480 doi:10.1016/j.afos.2016.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Lasley BL, Nanette S, Randolf JF, et al. The relationship of circulating dehydroepiandrosterone, testosterone, and estradiol to stages of the menopausal transition and ethnicity. J Clin Endocrinol Metab. 2002;87(8):37603767. PubMed ID: 12161507 doi:10.1210/jcem.87.8.8741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Kim C, Golden SH, Mather KJ, et al. Racial/ethnic differences in sex hormone levels among postmenopausal women in the diabetes prevention program. J Clin Endocrinol Metab. 2012;97(11):40514060. PubMed ID: 22879633 doi:10.1210/jc.2012-2117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Rohrmann S, Nelson WG, Rifai N, et al. Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J Clin Endocrinol Metab. 2007;92(7):25192525. PubMed ID: 17456570 doi:10.1210/jc.2007-0028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Correa-de-Araujo R, Addison O, Miljkovic I, et al. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging. Front Physiol. 2020;11:963. PubMed ID: 32903666 doi:10.3389/fphys.2020.00963

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR. Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther. 2008;88(11):13361344. PubMed ID: 18801853 doi:10.2522/ptj.20080079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Tuttle LJ, Sinacore DR, Mueller MJ. Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J Aging Res. 2012;2012:172957. PubMed ID: 22666591 doi:10.1155/2012/172957

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Beavers KM, Beavers DP, Houston DK, et al. Associations between body composition and gait-speed decline: results from the health, aging, and body composition study. Am J Clin Nutr. 2013;97(3):552560. PubMed ID: 23364001 doi:10.3945/ajcn.112.047860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Murphy RA, Reinders I, Register TC, et al. Associations of BMI and adipose tissue area and density with incident mobility limitation and poor performance in older adults. Am J Clin Nutr. 2014;99(5):10591065. PubMed ID: 24522448 doi:10.3945/ajcn.113.080796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Addison O, Young P, Inacio M, et al. Hip but not thigh intramuscular adipose tissue is associated with poor balance and increased temporal gait variability in older adults. Curr Aging Sci. 2014;7(2):137143. PubMed ID: 24998419 doi:10.2174/1874609807666140706150924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Hicks GE, Simonsick EM, Harris TB, et al. Trunk muscle composition as a predictor of reduced functional capacity in the health, aging and body composition study: the moderating role of back pain. Journals Gerontol Ser A Biol Sci Med Sci. 2005;60(11):14201424. doi:10.1093/gerona/60.11.1420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Therkelsen KE, Pedley A, Hoffmann U, Fox CS, Murabito JM. Intramuscular fat and physical performance at the Framingham Heart Study. Age. 2016;38(2):112. doi:10.1007/s11357-016-9893-2

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1399 1399 387
Full Text Views 17 17 2
PDF Downloads 25 25 4