Preschool to School-Age Physical Activity Trajectories and School-Age Physical Literacy: A Longitudinal Analysis

in Journal of Physical Activity and Health
View More View Less
  • 1 Child Health & Exercise Medicine Program, Department of Pediatrics, McMaster University, Hamilton, ON, Canada
  • | 2 Department of Kinesiology, McMaster University, Hamilton, ON, Canada
  • | 3 School of Human Movement and Nutritional Sciences, University of Queensland, Saint Lucia, QLD, Australia
Restricted access

Purpose: The associations between longitudinal physical activity (PA) patterns across childhood and physical literacy have not been studied. The purpose of this study was to identify PA trajectories from preschool to school-age, and to determine if trajectory group membership was associated with school-age physical literacy. Methods: Participants (n = 279, 4.5 [0.9] y old, 48% girls) enrolled in this study and completed annual assessments of PA with accelerometry over 6 timepoints. Physical literacy was assessed at timepoint 6 (10.8 [1.0] y old). Group-based trajectory analysis was applied to identify trajectories of total volume of PA and of moderate to vigorous PA and to estimate group differences in physical literacy. Results: Three trajectories of total volume of PA and of moderate to vigorous PA were identified. Groups 1 (lowest PA) included 40% to 53% of the sample, groups 2 included 39% to 44% of the sample, and groups 3 (highest PA) included 8% to 16% of the sample. All trajectories declined from timepoint 1 to timepoint 6. School-age physical literacy was lowest in trajectory groups with the lowest total volume of PA or moderate to vigorous PA over time (P < .05). Conclusions: PA should be promoted across early and middle childhood, as it may play a formative role in the development of school-age physical literacy.

Timmons (timmonbw@mcmaster.ca) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 257 KB)
  • 1.

    International Physical Literacy Association. Physical Literacy. Published 2014. Accessed April 19, 2018. https://www.physical-literacy.org.uk/

    • Search Google Scholar
    • Export Citation
  • 2.

    Cairney J, Dudley D, Kwan M, Bulten R, Kriellaars D. Physical literacy, physical activity and health: toward an evidence-informed conceptual model. Sports Med. 2019;49(3):371383. PubMed ID: 30747375 doi:10.1007/s40279-019-01063-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Caldwell HAT, Di Cristofaro NA, Cairney J, Bray SR, Macdonald MJ, Timmons BW. Physical literacy, physical activity, and health indicators in school-age children. Int J Environ Res Public Health. 2020;17(15):5367. doi:10.3390/ijerph17155367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stearns JA, Wohlers B, McHugh TLF, Kuzik N, Spence JC. Reliability and validity of the PLAYfun tool with children and youth in Northern Canada. Meas Phys Educ Exerc Sci. 2018;23(1):4757. doi:10.1080/1091367X.2018.1500368

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bremer E, Graham JD, Bedard C, Rodriguez C, Kriellaars D, Cairney J. The association between PLAYfun and physical activity: a convergent validation study. Res Q Exerc Sport. 2019;91(2):179187. PubMed ID: 31617795 doi:10.1080/02701367.2019.1652723

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Brown DMY, Dudley DA, Cairney J. Physical literacy profiles are associated with differences in children’s physical activity participation: a latent profile analysis approach. J Sci Med Sport. 2020;23(11):10621067. PubMed ID: 32475780 doi:10.1016/j.jsams.2020.05.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hnatiuk JA, Lamb KE, Ridgers ND, Salmon J, Hesketh KD. Changes in volume and bouts of physical activity and sedentary time across early childhood: a longitudinal study. Int J Behav Nutr Phys Act. 2019;16(1):19. doi:10.1186/s12966-019-0805-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Farooq MA, Martin A, Janssen X, et al. Longitudinal changes in moderate-to-vigorous-intensity physical activity in children and adolescents: a systematic review and meta-analysis. Obes Rev. 2020;21(1):115. doi:10.1111/obr.12953

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Annu Rev Clin Psychol. 2010;6(1):109138. doi:10.1146/annurev.clinpsy.121208.131413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pate RR, Schenkelberg MA, Dowda M, McIver KL. Group-based physical activity trajectories in children transitioning from elementary to high school. BMC Public Health. 2019;19(1):17. doi:10.1186/s12889-019-6630-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kwon S, Janz KF, Letuchy EM, Burns TL, Levy SM. Developmental trajectories of physical activity, sports, and television viewing during childhood to young adulthood: Iowa bone development study. JAMA Pediatr. 2015;169(7):666672. PubMed ID: 25984811 doi:10.1001/jamapediatrics.2015.0327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Caldwell HAT, Proudfoot NA, King-Dowling S, Di Cristofaro NA, Cairney J, Timmons BW. Tracking of physical activity and fitness during the early years. Appl Physiol Nutr Metab. 2016;41(5):504510. PubMed ID: 27045869 doi:10.1139/apnm-2015-0338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cooper AR, Goodman A, Page AS, et al. Objectively measured physical activity and sedentary time in youth: the International children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12(1):110. doi:10.1186/s12966-015-0274-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Taylor RW, Williams SM, Farmer VL, Taylor BJ. Changes in physical activity over time in young children: a longitudinal study using accelerometers. PLoS One. 2013;8(11):e81567. PubMed ID: 24282607 doi:10.1371/journal.pone.0081567

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Timmons BW, Proudfoot NA, MacDonald MJ, Bray SR, Cairney J. The health outcomes and physical activity in preschoolers (HOPP) study: rationale and design. BMC Public Health. 2012;12(1):284. doi:10.1186/1471-2458-12-284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tremblay MS, Carson V, Chaput J-P, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6 suppl 2):S311S327. doi:10.1139/apnm-2016-0151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tremblay MS, Chaput J-P, Adamo KB, et al. Canadian 24-hour movement guidelines for the early years (0–4 years): an integration of physical activity, sedentary behaviour, and sleep. BMC Public Health. 2017;17(suppl 5):874. doi:10.1186/s12889-017-4859-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Proudfoot NA, King-Dowling S, Cairney J, Bray SR, MacDonald MJ, Timmons BW. Physical activity and trajectories of cardiovascular health indicators during early childhood. Pediatrics. 2019;144(1):e20182242. doi:10.1542/peds.2018-2242

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pfeiffer KA, Dowda M, McIver KL, Pate RR. Factors related to objectively measured physical activity in preschool children. Pediatr Exerc Sci. 2009;21(2):196. PubMed ID: 19556625 doi:10.1123/pes.21.2.196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rich C, Geraci M, Griffiths L, Sera F, Dezateux C, Cortina-Borja M. Quality control methods in accelerometer data processing: defining minimum wear time. PLoS One. 2013;8(6):e67206. PubMed ID: 23826236 doi:10.1371/journal.pone.0067206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sport for Life. Physical Literacy Assessment for Youth. Published 2013. Accessed February 22, 2017. http://play.physicalliteracy.ca/what-play

  • 23.

    Caldwell HAT, Di Cristofaro NA, Cairney J, Bray SR, Timmons BW. Measurement properties of the Physical Literacy Assessment for Youth (PLAY) Tools. Appl Physiol Nutr Metab. 2020;46(6):571578. doi:10.1139/apnm-2020-0648

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cairney J, Veldhuizen S, Graham JD, et al. A construct validation study of PLAYfun. Med Sci Sport Exerc. 2018;50(4):855862. doi:10.1249/MSS.0000000000001494

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kuczmarski R, Ogden C. 2000 CDC growth charts for the United States: Methods and development. In: Vital Health Statistics. Vol. 246. 2002:1190. Accessed December 3, 2014. http://europepmc.org/abstract/MED/12043359

    • Search Google Scholar
    • Export Citation
  • 26.

    Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689694. Accessed June 29, 2016. http://www.ncbi.nlm.nih.gov/pubmed/11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Jones BL, Nagin DS. A stata plugin for estimating group-based trajectory models. Carnegie Mellon Univ. 2012:129. doi:10.1184/r1/6470963.v1

    • Search Google Scholar
    • Export Citation
  • 28.

    Nagin DS, Jones BL, Passos VL, Tremblay RE. Group-based multi-trajectory modeling. Stat Methods Med Res. 2018;27(7):20152023. PubMed ID: 29846144 doi:10.1177/0962280216673085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jones BL, Nagin DS. Advances in group-based trajectory modeling and an SAS procedure for estimating them. Sociol Methods Res. 2007;35(4):542571. doi:10.1177/0049124106292364

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol Methods Res. 2001;29(3):374393. doi:10.1177/0049124101029003005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Nagin DS. Group-Based Modeling of Development. Cambridge, MA: Harvard University Press; 2005. doi:10.4159/9780674041318

  • 32.

    Farooq MA, Parkinson KN, Adamson AJ, et al. Timing of the decline in physical activity in childhood and adolescence: gates head Millennium Cohort Study. Br J Sports Med. 2018;52(15):10021006. PubMed ID: 28288966 doi:10.1136/bjsports-2016-096933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Janz KF, Letuchy EM, Burns TL, Francis SL, Levy SM. Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Med Sci Sports Exerc. 2015;47(10):22012206. PubMed ID: 25751769 doi:10.1249/MSS.0000000000000648

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl. 3):S197S239. doi:10.1139/apnm-2015-0663

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Warburton DER, Bredin SSD. Health benefits of physical activity. Curr Opin Cardiol. 2017;32(5):541556. PubMed ID: 28708630 doi:10.1097/HCO.0000000000000437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kriellaars DJ, Cairney J, Bortoleto MAC, Kiez TKM, Dudley D, Aubertin P. The impact of circus arts instruction in physical education on the physical literacy of children in grades 4 and 5. J Teach Phys Educ. 2019;38(2):162170. doi:10.1123/jtpe.2018-0269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sport Exerc. 2011;43(7):13601368. doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6 6 0
Full Text Views 1615 1615 384
PDF Downloads 597 597 48