The Compositional Impacts of 2 Distinct 24-Hour Movement Behavior Change Patterns on Physical Fitness in Chinese Adolescents

in Journal of Physical Activity and Health
View More View Less
  • 1 School of Sport Science, Key Laboratory of the Ministry of Education of Exercise and Physical Fitness, Beijing Sport University, Beijing, China
Restricted access

Background: The study aimed to examine predicted differences of 2 different behavior change patterns on physical fitness (PF). Methods: Participants were 241 students (51% girls) aged 11–14 years from China. Light physical activity, moderate to vigorous physical activity (MVPA), and sedentary behavior (SB) were objectively measured. Sleep was obtained by subtracting from awake time. According to Chinese National student PF standards, 5 components of PF, including body mass index, cardiorespiratory fitness, speed, muscular explosive power and strength endurance, and flexibility, were assessed. The effects of different time reallocations between 24-hour movement behaviors on PF were estimated based on adjusted compositional multiple linear regression models with isometric log ratios. Results: Compared with MVPA substituting for the remaining behaviors, MVPA replacing SB or light physical activity produced more favorable changes on the comprehensive PF score, cardiorespiratory fitness, explosive power, and speed. MVPA replacing 30 minutes of SB was associated with favorable changes in PF (+1.9 [0.53, 3.18] points), 50-m run (−0.17 [−0.31, −0.04] s), long-distance running (−5.54 s [for girls]/7.25 s [for boys]), and long jump (+0.05 [0.01, 0.09] m). When sleep replaced SB, PF improved. Conclusions: MVPA substituting SB or light physical activity is a strategy with a greater improvement in PF.

H. Li (janerobin@126.com) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 431 KB)
  • 1.

    World Health Organization. Guidelines on physical activity, sedentary behaviour and sleep for children under 5 years of age. https://apps.who.int/iris/handle/10665/311664. Accessed May 1, 2020.

    • Search Google Scholar
    • Export Citation
  • 2.

    World Health Organization. WHO Guidelines on physical activity and sedentary behaviour. https://apps.who.int/iris/handle/10665/336656. Accessed November 25, 2020.

    • Search Google Scholar
    • Export Citation
  • 3.

    Pedisic Z. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research - the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46(1):135146.

    • Search Google Scholar
    • Export Citation
  • 4.

    Chaput JP, Leduc G, Boyer C, et al. Objectively measured physical activity, sedentary time and sleep duration: independent and combined associations with adiposity in Canadian children. Nutr Diabetes. 2014;4(6):e117. PubMed ID: 24911633 doi:10.1038/nutd.2014.14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chastin SF, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984. PubMed ID: 26461112 doi:10.1371/journal.pone.0139984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Fairclough SJ, Dumuid D, Taylor S, et al. Fitness, fatness and the reallocation of time between children’s daily movement behaviours: an analysis of compositional data. Int J Behav Nutr Phys Act. 2017;14(1):64. PubMed ID: 28486972 doi:10.1186/s12966-017-0521-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Curtis RG, Dumuid D, Olds T, et al. The association between time-use behaviors and physical and mental well-being in adults: a compositional isotemporal substitution analysis. J Phys Act Health. 2020;17(2):197203. PubMed ID: 31918406 doi:10.1123/jpah.2018-0687

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Dumuid D, Lewis LK, Olds TS, Maher C, Bondarenko C, Norton L. Relationships between older adults’ use of time and cardio-respiratory fitness, obesity and cardio-metabolic risk: a compositional isotemporal substitution analysis. Maturitas. 2018;110:104110. PubMed ID: 29563028 doi:10.1016/j.maturitas.2018.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dumuid D, Stanford TE, Pedisic Z, et al. Adiposity and the isotemporal substitution of physical activity, sedentary time and sleep among school-aged children: a compositional data analysis approach. BMC Public Health. 2018;18(1):311. PubMed ID: 29499689 doi:10.1186/s12889-018-5207-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    McGregor DE, Palarea-Albaladejo J, Dall PM, Hron K, Chastin S. Cox regression survival analysis with compositional covariates: application to modelling mortality risk from 24-h physical activity patterns. Stat Methods Med Res. 2020;29(5):14471465. PubMed ID: 31342855 doi:10.1177/0962280219864125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Taylor RW, Haszard JJ, Meredith-Jones KA, et al. 24-h movement behaviors from infancy to preschool: cross-sectional and longitudinal relationships with body composition and bone health. Int J Behav Nutr Phys Act. 2018;15(1):118. PubMed ID: 30477518 doi:10.1186/s12966-018-0753-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Winkler EAH, Chastin S, Eakin EG, et al. Cardiometabolic impact of changing sitting, standing, and stepping in the workplace. Med Sci Sports Exerc. 2018;50(3):516524. PubMed ID: 29166319 doi:10.1249/MSS.0000000000001453

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Zhenya C, Shuming W. Study on the isochronous substitution effect of movement behavior on physical health of preschool children. China Sport Science. 2020;40(10):5057.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lemos L, Clark C, Brand C, et al. 24-Hour movement behaviors and fitness in preschoolers: a compositional and isotemporal reallocation analysis. Scand J Med Sci Sports. 2021;31(6):13711379. PubMed ID: 33599022 doi:10.1111/sms.13938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Oviedo-Caro MA, Bueno-Antequera J, Munguia-Izquierdo D. Associations of 24-hours activity composition with adiposity and cardiorespiratory fitness: the PregnActive project. Scand J Med Sci Sports. 2020;30(2):295302. PubMed ID: 31593623

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Malina RM. Top 10 research questions related to growth and maturation of relevance to physical activity, performance, and fitness. Res Q Exerc Sport. 2014;85(2):157173. PubMed ID: 25098012 doi:10.1080/02701367.2014.897592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pollock RD, Duggal NA, Lazarus NR, Lord JM, Harridge SDR. Cardiorespiratory fitness not sedentary time or physical activity is associated with cardiometabolic risk in active older adults. Scand J Med Sci Sports. 2018;28(6):16531660. PubMed ID: 29427511 doi:10.1111/sms.13071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Saucedo-Araujo RG, Huertas-Delgado FJ, Villa-Gonzalez E, Avila-Garcia M, Galvez-Fernandez P, Tercedor P. Is children’s health-related quality of life associated with physical fitness and mode of commuting? PREVIENE Project. Perspect Public Health. 2021;141(2):102110. PubMed ID: 33733950 doi:10.1177/1757913921992405

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Xiaotong L, Xin L, Yan W, Dongfeng L, Zhengzhen W. Research on the relationship among physical activity, cardiorespiratory fitness and obesity in adolescents between 12 and 14. Chin J Sports Med. 2016;35(10):930939+971.

    • Search Google Scholar
    • Export Citation
  • 20.

    Xin L, Xiaotong L, Zhengzhen W, Yan W, Mengdie W. Effects of different exercise loads on cardiorespiratory fitness and body composition among adolescents. China Sport Sci Technol. 2017;53(5):110116.

    • Search Google Scholar
    • Export Citation
  • 21.

    Resaland GK, Andersen LB, Mamen A, Anderssen SA. Effects of a 2-year school-based daily physical activity intervention on cardiorespiratory fitness: the Sogndal school-intervention study. Scand J Med Sci Sports. 2011;21(2):302309. PubMed ID: 19895384 doi:10.1111/j.1600-0838.2009.01028.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Neil-Sztramko SE, Caldwell H, Dobbins M. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2021;9:CD007651. PubMed ID: 34555181

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tudor-Locke C, Barreira TV, Schuna JM Jr, et al. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Int J Behav Nutr Phys Act. 2015;12(1):11. PubMed ID: 25881074 doi:10.1186/s12966-015-0172-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37(11):S582S588. doi:10.1249/01.mss.0000185292.71933.91

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Troiano RP, Berrigan D, Dodd KW, MÂSse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ministry of Education. Notice of the Ministry of Education on Issuing the National Student Physical Health Standards. Ministry of Education; 2014.

    • Search Google Scholar
    • Export Citation
  • 27.

    Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C. Isometric logratio transformations for compositional data analysis. Math Geol. 2003;35(3):279300. doi:10.1023/A:1023818214614

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Dumuid D, Stanford TE, Martin-Fernandez JA, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2018;27(12):37263738. PubMed ID: 28555522 doi:10.1177/0962280217710835

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Beltran-Valls MR, Adelantado-Renau M, Moliner-Urdiales D. Reallocating time spent in physical activity intensities: longitudinal associations with physical fitness (DADOS study). J Sci Med Sport. 2020;23(10):968972. PubMed ID: 32376197 doi:10.1016/j.jsams.2020.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Dumuid D, Pedisic Z, Stanford TE, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2019;28(3):846857. PubMed ID: 29157152 doi:10.1177/0962280217737805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Taylor RW, Haszard JJ, Farmer VL, et al. Do differences in compositional time use explain ethnic variation in the prevalence of obesity in children? Analyses using 24-hour accelerometry. Int J Obes. 2020;44(1):94103. doi:10.1038/s41366-019-0377-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Healy S, Brewer B, Garcia J, Daly J, Patterson F. Sweat, sit, sleep: a compositional analysis of 24-hr movement behaviors and body mass index among children with autism spectrum disorder. Autism Res. 2021;14(3):545550. PubMed ID: 33186491 doi:10.1002/aur.2434

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Aggio D, Smith L, Hamer M. Effects of reallocating time in different activity intensities on health and fitness: a cross sectional study. Int J Behav Nutr Phys Act. 2015;12(1):83. PubMed ID: 26104041 doi:10.1186/s12966-015-0249-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Farrahi V, Kangas M, Walmsley R, et al. Compositional associations of sleep and activities within the 24-h cycle with cardiometabolic health markers in adults. Med Sci Sports Exerc. 2021;53(2):324332. PubMed ID: 32776775 doi:10.1249/MSS.0000000000002481

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Joensuu L, Kujala UM, Kankaanpaa A, et al. Physical fitness development in relation to changes in body composition and physical activity in adolescence. Scand J Med Sci Sports. 2021;31(2):456464. PubMed ID: 33038034 doi:10.1111/sms.13847

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ng E, Wake M, Olds T, et al. Equivalence curves for healthy lifestyle choices. Pediatrics. 2021;147(4):e2020025395. PubMed ID: 33771915 doi:10.1542/peds.2020-025395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Chastin SFM, McGregor DE, Biddle SJH, et al. Striking the right balance: evidence to inform combined physical activity and sedentary behavior recommendations. J Phys Act Health. 2021;18(6):631637. PubMed ID: 33990471 doi:10.1123/jpah.2020-0635

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Zhang T, Li H. Application prospects of compositional data analysis method in physical activity and health. China Sport Science. 2020;4(9):7482.

    • Search Google Scholar
    • Export Citation
  • 39.

    Dumuid D, Olds T, Lewis LK, et al. The adiposity of children is associated with their lifestyle behaviours: a cluster analysis of school-aged children from 12 nations. Pediatr Obes. 2018;13(2):111119. PubMed ID: 28027427 doi:10.1111/ijpo.12196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Craggs C, Corder K, van Sluijs EM, Griffin SJ. Determinants of change in physical activity in children and adolescents: a systematic review. Am J Prev Med. 2011;40(6):645658. PubMed ID: 21565658 doi:10.1016/j.amepre.2011.02.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hesketh KR, O’Malley C, Paes VM, et al. Determinants of change in physical activity in children 0-6 years of age: a systematic review of quantitative literature. Sports Med. 2017;47(7):13491374. PubMed ID: 27988875 doi:10.1007/s40279-016-0656-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1425 1425 426
Full Text Views 39 39 7
PDF Downloads 55 55 5