The Relationship Between Usual Daily Physical Activity With Serum Markers Related to Bone Metabolism and Demographic Characteristics in Postmenopausal Women Aged 50–65 Years

in Journal of Physical Activity and Health

Click name to view affiliation

Saeedollah Azimi-ShomaliFaculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

Search for other papers by Saeedollah Azimi-Shomali in
Current site
Google Scholar
PubMed
Close
,
Azizeh Farshbaf-KhaliliPhysical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran

Search for other papers by Azizeh Farshbaf-Khalili in
Current site
Google Scholar
PubMed
Close
*
,
Fariba EslamianPhysical Medicine and Rehabilitation, Physical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran

Search for other papers by Fariba Eslamian in
Current site
Google Scholar
PubMed
Close
,
Neda DolatkhahPhysical Medicine and Rehabilitation Research Centre, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran

Search for other papers by Neda Dolatkhah in
Current site
Google Scholar
PubMed
Close
, and
Nafiseh Ghassab-AbdollahiDepartment of Health Education & Promotion, Faculty of Public Health, Aging Research Institute, Student Research Committee, Tabriz University of Medical sciences, Tabriz, Iran

Search for other papers by Nafiseh Ghassab-Abdollahi in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Background: Bone turnover markers can predict subsequent changes in bone status. This study aimed to investigate the relationship between usual daily physical activity (PA) with bone markers. Methods: This cross-sectional study was conducted on 500 postmenopausal women aged 50–65 years in Tabriz-Iran in 2018. The women were recruited by a simple random method. The International Physical Activity Questionnaire was used to assess PA. The laboratory tests of 25-Hydroxyvitamin D3, alkaline phosphatase, calcium, and phosphorus were also used to examine bone function. Results: The education, income, employment status, sun exposure, and history of exercise were significantly correlated with PA. Among reproductive characteristics, only menopausal age showed a significant relationship with total PA levels (r = .285, P = .048). None of the anthropometric indices showed a statistically significant relationship with total PA. Serum calcium (r = −.242) and phosphorus (r = −.045) levels showed negative and inverse relationships with total PA. The intensity of this association was statistically significant only for the calcium (β = −0.108, 95% confidence interval, −0.117 to 0.098; P = .023). 25-Hydroxyvitamin D3 (r = .007) and alkaline phosphatase (r = .046) were directly and positively but nonsignificantly correlated to the intensity of total PA. Conclusion: Usual daily physical activity with any levels has no effect on bone markers except for calcium. Despite of the beneficial effects of PA, our findings showed that usual daily physical activity without increasing total PA cannot affect bone health. For maximal effects of PA on bone health, it seems that a degree of intensity, continuity, and regularity of PA programs should be considered to stimulate bone formation.

Ghassab-Abdollahi (nnn.gassabnnn@gmail.com) and Farshbaf-Khalili (farshbafa@tbzmed.ac.ir) are corresponding authors.

  • Collapse
  • Expand
  • 1.

    Xu J, Lombardi G, Jiao W, Banfi G. Effects of exercise on bone status in female subjects, from young girls to postmenopausal women: an overview of systematic reviews and meta-analyses. Sports Med. 2016;46(8):11651182. PubMed ID: 26856338 doi:10.1007/s40279-016-0494-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Marini S, Barone G, Masini A, et al. The effect of physical activity on bone biomarkers in people with osteoporosis: a systematic review. Front Endocrinol. 2020;11(October):111. doi:10.3389/fendo.2020.585689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lorentzon M, Branco J, Brandi ML, et al. Algorithm for the use of biochemical markers of bone turnover in the diagnosis, assessment and follow-up of treatment for osteoporosis. Adv Ther. 2019;36(10):28112824. PubMed ID: 31440982 doi:10.1007/s12325-019-01063-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lester ME, Urso ML, Evans RK, et al. Influence of exercise mode and Osteogenic Index on bone biomarker responses during short-term physical training. Bone. 2009;45(4):768776. PubMed ID: 19520194 doi:10.1016/j.bone.2009.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Agostini D, Zeppa SD, Id FL. Muscle and bone health in postmenopausal women: role of protein and vitamin D supplementation. Nutrients. 2018;10(8):1103. doi:10.3390/nu10081103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lou BS, Shulman L. Monitoring osteoporosis therapy: bone mineral density, bone turnover markers, or both? Am J Med. 2006;119(4, suppl 1):S25S31. doi:10.1016/j.amjmed.2005.12.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Kotlarczyk MP, Perera S, Resnick NM, Nace DA, Greenspan SL. Early changes in bone turnover predict longer-term changes in bone mineral density but not trabecular bone score in frail older women. Arch Osteoporos. 2020;15(79):17. doi:10.1007/s11657-020-00749-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Karlamangla AS, Burnett-Bowie SAM, Crandall CJ. Bone health during the menopause transition and beyond. Obstet Gynecol Clin North Am. 2018;45(4):695708. PubMed ID: 30401551 doi:10.1016/j.ogc.2018.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pardhe BD, Pathak S, Bhetwal A, et al. Effect of age and estrogen on biochemical markers of bone turnover in postmenopausal women: a population-based study from Nepal. Int J Womens Health. 2017;9:781788. PubMed ID: 29123427 doi:10.2147/IJWH.S145191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Fernandes Moreira LD, de Oliveira ML, Lirani-Galvão AP, Marin-Mio RV, dos Santos RN, Lazaretti-Castro M. Physical exercise and osteoporosis: effects of different types of exercises on bone and physical function of postmenopausal women. Arq Bras Endocrinol Metabol. 2014;58(5):514522. doi:10.1590/0004-2730000003374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Karlsson MK, Nordqvist A, Karlsson C. Physical activity, muscle function, falls and fractures. Food Nutr Res. 2008;52:17. doi:10.3402/fnr.v52i0.1920

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Troy KL, Mancuso ME, Butler TA, Johnson JE. Exercise early and often: effects of physical activity and exercise on women’s bone health. Int J Environ Res Public Heal. 2018;15(5):878. doi:10.3390/ijerph15050878

    • Search Google Scholar
    • Export Citation
  • 13.

    Faienza MF, Lassandro G, Chiarito M, Valente F, Ciaccia L, Giordano P. How physical activity across the lifespan can reduce the impact of bone ageing: a literature review. Int J Environ Res Public Health. 2020;17(6):1862. doi:10.3390/ijerph17061862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Specker B, Thiex NW, Sudhagoni RG. Does exercise influence pediatric bone? A systematic review. Clin Orthop Relat Res. 2015;473(11):36583672. PubMed ID: 26208606 doi:10.1007/s11999-015-4467-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Adami S, Gatti D, Viapiana O, et al. Physical activity and bone turnover markers: a cross-sectional and a longitudinal study. Calcif Tissue Int. 2008;83(6):388392. PubMed ID: 18949504 doi:10.1007/s00223-008-9184-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Roghani T, Torkaman G, Movasseghe S, Hedayati M, Goosheh B, Bayat N. Effects of short-term aerobic exercise with and without external loading on bone metabolism and balance in postmenopausal women with osteoporosis. Rheumatol Int. 2013;33(2):291298. PubMed ID: 22441962 doi:10.1007/s00296-012-2388-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Millen AE, Wactawski-Wende J, Pettinger M, et al. Predictors of serum 25-hydroxyvitamin D concentrations among postmenopausal women: the women’s health initiative calcium plus vitamin D clinical trial. Am J Clin Nutr. 2010;91(5):13241335. PubMed ID: 20219959 doi:10.3945/ajcn.2009.28908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Neide APN, Patricia FPM, Vanessa AC, et al. Effect of vitamin D level and physical exercise on the physical performance and functional test results in elderly women. J Geriatr Med Gerontol. 2019;5(1):061. doi:10.23937/2469-5858/1510061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Segev D, Hellerstein D, Dunsky A. Physical activity-does it really increase bone density in postmenopausal women? A review of articles published between 2001–2016. Curr Aging Sci. 2018;11(1):49. PubMed ID: 28925889 doi:10.2174/1874609810666170918170744

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16(1):148156. PubMed ID: 11149479 doi:10.1359/jbmr.2001.16.1.148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Adamu B, Sani MU, Abdu A. Physical exercise and health: a review. Niger J Med. 2006;15(3):190196. PubMed ID: 17111741 doi:10.4314/njm.v15i3.37214

  • 22.

    Siddiqui NI, Nessa A, Hossain MA. Regular physical exercise: way to healthy life. Mymensingh Med J. 2010;19(1):154158. https://pubmed.ncbi.nlm.nih.gov/20046192/

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kluczynski MA, Lamonte MJ, Mares JA, et al. Duration of physical activity and serum 25-hydroxyvitamin D status of postmenopausal women. Ann Epidemiol. 2011;21(6):440449. doi:10.1016/j.annepidem.2010.11.011.duration

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Abdolalipour S, Mirghafourvand M, Mobasseri M, et al. Assessment of primary osteoporosis status in the postmenopausal women of tabriz and the effect of curcumin nanomicelles, nigella sativa oil, and curcumin nanomicelles and nigella sativa oil soft capsules on cellular-molecular and clinical outcomes: a study. Int J Women’s Heal Reprod Sci. 2021;9(1):310. doi:10.15296/ijwhr.2021.02

    • Search Google Scholar
    • Export Citation
  • 25.

    Bayat N, Haji AZ, Ali Shiri GH, Ebadi A, Hosseini MAS, Lalouei A. Frequency of osteoporosis and osteopenia in postmenopausal military family’s women. Army Uni Med Sci IR Iran. 2008;6:2530. https://www.sid.ir/en/journal/ViewPaper.aspx?id=114879

    • Search Google Scholar
    • Export Citation
  • 26.

    IPAQ. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms. Published 2005. file:///C:/Users/user/Downloads/GuidelinesforDataProcessingandAnalysisoftheInternationalPhysicalActivityQuestionnaireIPAQShortandLongForms (1).pdf. Accessed June 17, 2021.

    • Search Google Scholar
    • Export Citation
  • 27.

    Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):13811395. PubMed ID: 12900694 doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gidlowa C, Johnston LH, Cronec D, Ellisa N, James David. A systematic review of the relationship between socio-economic position and physical activity. Health Educ J. 2006;65(4):338367. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed7&NEWS=N&AN=2006523694

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Shaw BA, Spokane LS. Examining the association between education level and physical activity changes during early old age. J Aging Health. 2008;20(7):767787. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L352389459%0Ahttp://dx.doi.org/10.1177/0898264308321081.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Biernat E, Piatkowska M. Leisure time physical activity among employed and unemployed women in Poland. Hong Kong J Occup Ther. 2017;29(1):4754. PubMed ID: 30186072 doi:10.1016/j.hkjot.2017.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lawler S, Sugiyama T, Owen N. Sun exposure concern, sun protection behaviors and physical activity among Australian adults. Cancer Causes Control. 2007;18(9):10091014. PubMed ID: 17641981 doi:10.1007/s10552-007-9041-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nagata C, Wada K, Nakamura K, Tamai Y, Tsuji M, Shimizu H. Associations of physical activity and diet with the onset of menopause in Japanese women. Menopause. 2012;19(1):7581. PubMed ID: 21926924 doi:10.1097/gme.0b013e3182243737

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Zhao M, Whitcomb BW, Purdue-Smithe AC, et al. Physical activity is not related to risk of early menopause in a large prospective study. Hum Reprod. 2018;33(10):19601967. PubMed ID: 30189091 doi:10.1093/humrep/dey267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mikkelsen TF, Graff-Iversen S, Sundby JBE. Early menopause, association with tobacco smoking, coffee consumption and other lifestyle factors: a cross-sectional study. BMC Public Health. 2007;7(149):18. doi:10.1186/1471-2458-7-149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Baghery L, Salami F, Hedayati M, Reisi J. Effect of aerobic training on estrogen, PTH, calcium, alkaline phosphatase and albumin, in postmenopausal women. Salmand Iran J Ageing. 2010;4(2):26–35. http://salmandj.uswr.ac.ir/article-1-321-fa.html

    • Search Google Scholar
    • Export Citation
  • 36.

    Karakukcu C, Polat Y, Torun YA, Aysenur Kisaarslan PAC. The effects of acute and regular exercise on calcium, phosphorus and trace elements in young amateur boxers. Clin Lab. 2013;59(5–6):557562. PubMed ID: 23865354 doi:10.7754/clin.lab.2012.120505

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Zittermann A, Sabatschus O, Jantzen S, et al. Exercise-trained young men have higher calcium absorption rates and plasma calcitriol levels compared with age-matched sedentary controls. Calcif Tissue Int. 2000;67(3):215219. PubMed ID: 10954775 doi:10.1007/s002230001132

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Maïmoun L, Sultan C. Effect of physical activity on calcium homeostasis and calciotropic hormones: a review. Calcif Tissue Int. 2009;85(4):277286. PubMed ID: 19760298 doi:10.1007/s00223-009-9277-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gerdhem P, Ringsberg KAM, Obrant KJ, Akesson K. Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA study of elderly women. Osteoporos Int. 2005;16(11):14251431. PubMed ID: 15744449 doi:10.1007/s00198-005-1860-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Fernandes MR, Dos Reis Barreto W. Association between physical activity and Vitamin D: a narrative literature review. Rev Assoc Med Bras. 2017;63(6):550556. PubMed ID: 28876433 doi:10.1590/1806-9282.63.06.550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ashizawa N, Fujimura R, Kumpei T, Suzuki M. About of resistance exercise increases urinary calcium independently of osteoclastic activation in men. J Appl Physiol. 1997;83(4):11591163. PubMed ID: 9338424 doi:10.1152/jappl.1997.83.4.1159

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Iwamoto J, Shimamura C, Takeda T, et al. Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing rats. J Bone Miner Metab. 2004;22(1):2631. PubMed ID: 14691683 doi:10.1007/s00774-003-0443-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Yamazaki S, Ichimura S, Iwamoto J, Takeda TTY. Effect of walking exercise on bone metabolism in postmenopausal women with osteopenia/osteoporosis. J Bone Miner Metab. 2004;22(5):500508. PubMed ID: 15316873 doi:10.1007/s00774-004-0514-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Downs DS, Nigg OR, Hausenblas HA, Rauff EL. Why do people change physical activity behavior? In: ACSM’s Behavioral Aspects of Physical Activity and Exercise. Lippincott Williams & Wilkins; 2013. https://cme.lww.com/files/WhyDoPeopleChangePhysicalActivityBehavior-1550444625858.pdf

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2376 2376 278
Full Text Views 29 29 1
PDF Downloads 45 45 2