Supervised Aerobic Exercise Training and Increased Lifestyle Physical Activity to Reduce Cardiovascular Disease Risk for Women With Polycystic Ovary Syndrome: A Randomized Controlled Feasibility Trial

in Journal of Physical Activity and Health

Click name to view affiliation

Amie WoodwardLifestyle, Exercise and Nutrition Improvement (LENI) Research Group, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Collegiate Campus, Sheffield, United Kingdom

Search for other papers by Amie Woodward in
Current site
Google Scholar
PubMed
Close
*
,
David BroomCentre for Sport, Exercise and Life Sciences, Health and Wellbeing Research Institute, Coventry University, Coventry, United Kingdom

Search for other papers by David Broom in
Current site
Google Scholar
PubMed
Close
,
Caroline DaltonBiomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom

Search for other papers by Caroline Dalton in
Current site
Google Scholar
PubMed
Close
,
Mostafa MetwallyJessop Wing, Sheffield, United Kingdom

Search for other papers by Mostafa Metwally in
Current site
Google Scholar
PubMed
Close
, and
Markos KlonizakisLifestyle, Exercise and Nutrition Improvement (LENI) Research Group, College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Collegiate Campus, Sheffield, United Kingdom

Search for other papers by Markos Klonizakis in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Polycystic ovary syndrome (PCOS) is a complex, heterogeneous endocrinopathy. Women with PCOS often present with cardiovascular disease risk factors. Physical activity (PA) interventions reduce cardiovascular disease risk factors in women with PCOS. However, sedentary behaviors have a distinct deleterious effect on cardiometabolic health. Increasing PA and reducing sedentary behaviors may be a worthwhile therapeutic target to improve cardiovascular health in this population. This study investigated the feasibility of 2 PA interventions to decrease cardiovascular disease risk in women with PCOS. Methods: This was a feasibility randomized controlled trial of 2 PA interventions in 36 women with PCOS. Participants were randomized to a supervised exercise intervention (n = 12), a lifestyle physical activity group intervention aimed at reducing sedentary behaviors (n = 12), or a control group (n = 12), for 12 weeks. Primary outcomes included the feasibility and acceptability of the interventions and procedures. Results: Recruitment rate was 56%. Adherence rate was 53% and 100% to the exercise intervention and lifestyle PA intervention, respectively. Secondary outcome data indicate a reduction in oxidized low-density lipoprotein concentrations in the exercise group, and weight loss in both intervention groups. Conclusions: The procedures for recruitment, allocation, and outcome measurements were acceptable. However, before progression to a full-scale trial, adherence to the exercise program should be addressed.

Woodward (amie.woodward@york.ac.uk) is corresponding author.

Amie Woodward is now at the York Trials Unit, Department of Health Sciences, University of York, Heslington, York, United Kingdom.

  • Collapse
  • Expand
  • 1.

    Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome [published correction appears in Hum Reprod. 2019;34(2):388]. Hum Reprod. 2018;33(9):16021618. PubMed ID: 30052961 doi:10.1093/humrep/dey256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Burks H, Wild R. Diagnostic criteria and epidemiology of PCOS. In: Pal L, ed. Polycystic Ovary Syndrome: Current and Emerging Concepts. Springer; 2014: 310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Papadakis G, Kandaraki E, Papalou O, Vryonidou A, Diamanti-Kandarakis E. Is cardiovascular risk in women with PCOS a real risk? Current insights. Minerva Endocrinol. 2017;42:340355. PubMed ID: 28146139 doi:10.23736/S0391-1977.17.02609-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dokras A. Cardiovascular disease risk in women with PCOS. Steroids. 2013;78(8):773776. PubMed ID: 23624351 doi:10.1016/j.steroids.2013.04.009

  • 5.

    Harrison CL, Lombard CB, Moran LJ, Teede HJ. Exercise therapy in polycystic ovary syndrome: a systematic review. Hum Reprod Update. 2011;17(2):171183. PubMed ID: 20833639 doi:10.1093/humupd/dmq045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kite C, Lahart IM, Afzal I, et al. Exercise, or exercise and diet for the management of polycystic ovary syndrome: a systematic review and meta-analysis. Syst Rev. 2019;8(1):51. PubMed ID: 30755271 doi:10.1186/s13643-019-0962-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976983. PubMed ID: 22374636 doi:10.2337/dc11-1931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105113. PubMed ID: 20577058 doi:10.1097/JES.0b013e3181e373a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bailey DP, Broom DR, Chrismas BC, Taylor L, Flynn E, Hough J. Breaking up prolonged sitting time with walking does not affect appetite or gut hormone concentrations but does induce an energy deficit and suppresses postprandial glycaemia in sedentary adults. Appl Physiol Nutr Metab. 2016;41(3):324331. PubMed ID: 26872294 doi:10.1139/apnm-2015-0462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Holvoet P, Mertens A, Verhamme P, et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler. 2001;21(5):844848. doi:10.1161/01.atv.21.5.844

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Koenig W, Karakas M, Zierer A, et al. Oxidized LDL and the risk of coronary heart disease: results from the MONICA/KORA Augsburg study. Clin Chem. 2011;57(8):11961200. PubMed ID: 21697499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Macut D, Damjanovic S, Panidis D, et al. Oxidised low-density lipoprotein concentration—early marker of an altered lipid metabolism in young women with PCOS. Eur J Endocrinol. 2006;155(1):131136. PubMed ID: 16793959

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Macut D, Panidis D, Glisic B, et al. Lipid and lipoprotein profile in women with polycystic ovary syndrome. Can J Physiol Pharmacol. 2008;86(4):199204. PubMed ID: 18418429

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Demirel F, Bideci A, Cinaz P, et al. Serum leptin, oxidized low density lipoprotein and plasma asymmetric dimethylarginine levels and their relationship with dyslipidemia in adolescent girls with polycystic ovary syndrome. Clin Endocrinol. 2007;67(1):129134. doi:10.1111/j.1365-2265.2007.02849.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ioannidis JP, Greenland S, Hlatky M, et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet. 2014;389(9912):166175. doi:10.1016/S0140-6736(13)62227-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Craig P, Dieppe P, Macintyre S, et al. Developing and evaluating complex interventions: the new Medical Research Council Guidance. BMJ. 2008;337:a1655. PubMed ID: 18824488 doi:10.1136/bmj.a1655

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Woodward A, Broom D, Dalton C, Metwally M, Klonizakis M. Supervised exercise training and increased physical activity to reduce cardiovascular disease risk in women with polycystic ovary syndrome: study protocol for a randomized controlled feasibility trial. Trials. 2020;21(1):101. PubMed ID: 31959233 doi:10.1186/s13063-019-3962-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162(2):193212. PubMed ID: 19841045 doi:10.1530/EJE-09-0733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Meyer C, McGrath BP, Teede HJ. Effects of medical therapy on insulin resistance and the cardiovascular system in polycystic ovary syndrome. Diabetes Care. 2007;30(3):471478. PubMed ID: 17327307 doi:10.2337/dc06-0618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Astrand PO, Ryhming I. A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J Appl Physiol. 1954;7(2):218221. PubMed ID: 13211501 doi:10.1152/jappl.1954.7.2.218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Suresh K. An overview of randomization techniques: an unbiased assessment of outcome in clinical research. J Hum Reprod Sci. 2011;4(1):811. PubMed ID: 21772732 doi:10.4103/0974-1208.82352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McCoy CE. Understanding the intention-to-treat principle in randomized controlled trials. West J Emerg Med. 2017;18(6):10751078. PubMed ID: 29085540 doi:10.5811/westjem.2017.8.35985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gupta SK. Intention-to-treat concept: a review. Perspect Clin Res. 2011;2(3):109112. PubMed ID: 21897887 doi:10.4103/2229-3485.83221

  • 24.

    Streiner D, Geddes J. Intention to treat analysis in clinical trials when there are missing data. Evid Based Ment Health. 2001;4(3):7071. PubMed ID: 12004740 doi:10.1136/ebmh.4.3.70

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    British Heart Foundation. Understanding Physical Activity. https://www.bhf.org.uk/informationsupport/publications/being-active/understanding-physical-activity. Accessed October 24, 2020. 2018.

    • Search Google Scholar
    • Export Citation
  • 26.

    Klonizakis M, Tew G, Gumber A, et al. Supervised exercise training as an adjunct therapy for venous leg ulcers: a randomized controlled feasibility trial. Br J Dermatol. 2018;178:10721082. PubMed ID: 29077990 doi:10.1111/bjd.16089

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mitropoulos A, Gumber A, Crank H, Akil M, Klonizakis M, Exploring the feasibility of an exercise programme including aerobic and resistance training in people with limited cutaneous systemic sclerosis. Clin Rheumatol. 2020;39(6):18891898. PubMed ID: 31933034 doi:10.1007/s10067-019-04921-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N. Oxidized low-density lipoprotein. Methods Mol Biol. 2010;610:403417. PubMed ID: 20013192 doi:10.1007/978-1-60327-029-8_24

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Craig CL, Marshall AL, Sjöström M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):13811395. PubMed ID: 12900694 doi:10.1249/01.MSS.0000078924.61453.FB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bullard T, Ji M, An R, Trinh L, Mackenzie M, Mullen SP. A systematic review and meta-analysis of adherence to physical activity interventions among three chronic conditions: cancer, cardiovascular disease, and diabetes. BMC Public Health. 2019;19(1):636. PubMed ID: 31126260 doi:10.1186/s12889-019-6877-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sim J, Lewis M. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision and efficiency. J Clin Epidemiol. 2012;65(3):301308. PubMed ID: 22169081 doi:10.1016/j.jclinepi.2011.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Whitehead AL, Julious SA, Cooper CL, Campbell MJ. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res. 2016;25(3):10571073. PubMed ID: 26092476 doi:10.1177/0962280215588241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Rowntree D. Statistics Without Tears. Penguin Books; 1971.

  • 34.

    Room J, Hannink E, Dawes H, Barker K. What interventions are used to improve exercise adherence in older people and what behavioural techniques are they based on? A systematic review. BMJ Open. 2017;7(12):e019221. PubMed ID: 29247111 doi:10.1136/bmjopen-2017-019221

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Aitken D, Buchbinder R, Jones G, Winzenberg T. Interventions to improve adherence to exercise for chronic musculoskeletal pain in adults. Aust Fam Physician. 2015;44(1–2):3942. PubMed ID: 25688958

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Vellinga A, Devine C, Ho MY, et al. What do patients value as incentives for participation in clinical trials? A pilot discrete choice experiment. Res Ethics. 2020;16(1–2):112. doi:10.1177/1747016119898669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Largent EA, Grady C, Miller FG, Wertheimer A. Money, coercion, and undue inducement: attitudes about payments to research participants. IRB. 2012;34(1):18. PubMed ID: 22338401

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Parkinson B, Meacock R, Sutton M, et al. Designing and using incentives to support recruitment and retention in clinical trials: a scoping review and a checklist for design. Trials. 2019;20(1):624. PubMed ID: 31706324 doi:10.1186/s13063-019-3710-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618637. PubMed ID: 22767467 doi:10.1093/humupd/dms030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Al-Rubean K, Youssef AM, AlFarsi Y, et al. Anthropometric cutoff values for predicting metabolic syndrome in a Saudi community: from the SAUDI-DM study. Ann Saudi Med. 2017;37(1):2130. PubMed ID: 28151453

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Katulanda P, Jayawardena MA, Sheriff MH, et al. Derivation of anthropometric cut-off levels to define CVD risk in Sri Lankan adults. Br J Nutr. 2011;105(7):10841090. PubMed ID: 21205381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Khader YS, Batieha A, Jaddou H, Batieha Z, El-Khateeb M, Ajlouni K. Anthropometric cutoff values for detecting metabolic abnormalities in Jordanian adults. Diabetes Metab Syndr Obes. 2010;3:395402. PubMed ID: 21437109 doi:10.2147/DMSOTT.S15154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Pasquali R, Casimirri F, Venturoli S, et al. Body fat distribution has weight-independent effects on clinical, hormonal, and metabolic features of women with polycystic ovary syndrome. Metabolism. 1994;43(6):706713. PubMed ID: 8201958 doi:10.1016/0026-0495(94)90118-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Heart UK. Getting a cholesterol test. https://www.heartuk.org.uk/cholesterol/getting-a-cholesterol-test. Accessed November 26, 2021. 2018.

    • Search Google Scholar
    • Export Citation
  • 45.

    Diabetes.co.uk. Normal and diabetic blood sugar level ranges. https://www.diabetes.co.uk/diabetes_care/blood-sugar-level-ranges.html. Accessed November 26, 2021. 2019.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Veltman-Verhulst SM, Goverde AJ, van Haeften TW, et al. Fasting glucose measurement as a potential first step screening for glucose metabolism abnormalities in women with anovulatory polycystic ovary syndrome. Hum Reprod. 2013;28(8):22282234. PubMed ID: 23739218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Fuchs D, Avanzas P, Arroyo-Espliguero R, et al. The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr Med Chem. 2009;16(35):46444653. PubMed ID: 19903144 doi:10.2174/092986709789878247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Ragab M, Hassan H, Zaytoun T, et al. Evaluation of serum neopterin, high-sensitivity C-reactive protein and thiobarbituric acid reactive substances in Egyptian patients with acute coronary syndromes. Exp Clin Cardiol. 2005;10(4):250255. PubMed ID: 19641675

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Peng QL, Zhang YM, Liang L, et al. A high level of serum neopterin is associated with rapidly progressive interstitial lung disease and reduced survival in dermatomyositis. Clin Exp Immunol. 2020;199(3):314325. PubMed ID: 31797350 doi:10.1111/cei.13404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Zheng B, Cao KY, Chan CP, et al. Serum neopterin for early assessment of severity of severe acute respiratory syndrome. Clin Immunol. 2005;116(1):1826. PubMed ID: 15925828 doi:10.1016/j.clim.2005.03.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    González F, Rote NS, Minium J, Kirwan JP. Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91(1):336340. PubMed ID: 16249279 doi:10.1210/jc.2005-1696

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    van der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14(1):142. PubMed ID: 29058587 doi:10.1186/s12966-017-0601-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3716 3354 77
Full Text Views 87 71 4
PDF Downloads 116 95 6