Evaluation of Electronic and Pen-and-Paper Formats of the Inventory of Physical Activity Barriers: A Randomized Crossover Study

in Journal of Physical Activity and Health

Click name to view affiliation

Mariana WingoodDepartment of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA

Search for other papers by Mariana Wingood in
Current site
Google Scholar
PubMed
Close
*
,
Salene JonesPublic Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

Search for other papers by Salene Jones in
Current site
Google Scholar
PubMed
Close
,
Nancy M. GellDepartment of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA

Search for other papers by Nancy M. Gell in
Current site
Google Scholar
PubMed
Close
,
Jennifer S. BrachDepartment of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA

Search for other papers by Jennifer S. Brach in
Current site
Google Scholar
PubMed
Close
, and
Denise M. PetersDepartment of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA

Search for other papers by Denise M. Peters in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: The Inventory of Physical Activity Barriers (IPAB) assesses physical activity participation barriers. Development, refinement, and psychometric evaluation of the IPAB occurred via an electronic format. However, various circumstances may require using a pen-and-paper format. As instrument formats are not always interchangeable, the authors aimed to establish whether 2 different formats (electronic and pen and paper) can be used interchangeably for the IPAB. Methods: This randomized crossover study included 66 community-dwelling adults aged 50 years and older (mean age = 73 [SD = 7.6]). Half the sample completed the electronic format of the IPAB first and the pen-and-paper format second, and the other half completed them in reverse order. Tests of equivalence and a Bland–Altman plot were performed. Results: The intraclass correlation coefficient between formats was .94, and kappa was .68. The mean difference between the 2 administration forms of the IPAB was 0.002 (P = .96). Both administration formats had high internal consistency (Cronbach alpha = .92 and .93) and illustrated construct validity (P ≤ .001 for both administration formats). Conclusion: Pen-and-paper and electronic formats of the IPAB are equivalent and, thus, can be used interchangeably among non-Hispanic whites who are highly educated. The format should be used consistently if completing preintervention and postintervention evaluations or comparing scores.

Wingood (mariana.wingood@uvm.edu) is corresponding author.

  • Collapse
  • Expand
  • 1.

    Watson KB, Carlson SA, Gunn JP, et al. Physical inactivity among adults aged 50 years and older. MMWR Morb Mortal Wkly Rep. 2016;65(36):954958. PubMed ID: 27632143 doi:10.15585/mmwr.mm6536a3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Cunningham C, O’Sullivan R, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: a systematic review of reviews and meta‐analyses. Scand J Med Sci Sports. 2020;30(5):816827. PubMed ID: 32020713 doi:10.1111/sms.13616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Wingood M, Jones SMW, Gell NM, Brach JS, Peters DM. The inventory of physical activity barriers for adults 50 years and older: refinement and validation. Gerontologist. 2021;gnab165. Published online Nov 18, 2021. doi:10.1093/geront/gnab165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Meirte J, Hellemans N, Anthonissen M, et al. Benefits and disadvantages of electronic patient-reported outcome measures: systematic review. JMIR Perioper Med. 2020;3(1):e15588. PubMed ID: 33393920 doi:10.2196/15588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gwaltney CJ, Shields AL, Shiffman S. Equivalence of electronic and paper-and-pencil administration of patient-reported outcome measures: a meta-analytic review. Value Health. 2008;11(2):322333. PubMed ID: 18380645 doi:10.1111/j.1524-4733.2007.00231.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Coons SJ, Gwaltney CJ, Hays RD, et al. Recommendations on evidence needed to support measurement equivalence between electronic and paper-based patient-reported outcome (PRO) measures: ISPOR ePRO good research practices task force report. Value Health. 2009;12(4):419429. PubMed ID: 19900250 doi:10.1111/j.1524-4733.2008.00470.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Campbell N, Ali F, Finlay AY, Salek SS. Equivalence of electronic and paper-based patient-reported outcome measures. Qual Life Res. 2015;24(8):19491961. PubMed ID: 25702266 doi:10.1007/s11136-015-0937-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Wu RC, Thorpe K, Ross H, Micevski V, Marquez C, Straus SE. Comparing administration of questionnaires via the internet to pen-and-paper in patients with heart failure: randomized controlled trial. J Med Internet Res. 2009;11(1):e1106. PubMed ID: 19275979 doi:10.2196/jmir.1106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Muehlhausen W, Doll H, Quadri N, et al. Equivalence of electronic and paper administration of patient-reported outcome measures: a systematic review and meta-analysis of studies conducted between 2007 and 2013. Health Qual Life Outcomes. 2015;13(1):167. doi:10.1186/s12955-015-0362-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Walter S, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med. 1998;17(1):101110. PubMed ID: 9463853 doi:10.1002/(SICI)1097-0258(19980115)17:1%2C101::AID-SIM727%2E3.0.CO;2-E.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    NHATS. Data Collection Instruments. National Health and Aging Trends Study. 2018. https://nhats.org/researcher/nhats/methods-documentation?id=instruments. Accessed October 18, 2021.

    • Search Google Scholar
    • Export Citation
  • 12.

    CDC. National Health and Nutrition Examination Survey Questionnaire. 2018. https://wwwn.cdc.gov/nchs/nhanes/default.aspx. Accessed October 18, 2021.

    • Search Google Scholar
    • Export Citation
  • 13.

    Greenwood JL, Joy EA, Stanford JB. The physical activity vital sign: a primary care tool to guide counseling for obesity. J Phys Act Health. 2010;7(5):571576. PubMed ID: 20864751 doi:10.1123/jpah.7.5.571

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Ball TJ, Joy EA, Goh TL, Hannon JC, Gren LH, Shaw JM. Validity of two brief primary care physical activity questionnaires with accelerometry in clinic staff. Prim Health Care Res Dev. 2015;16(1):100108. PubMed ID: 24472569 doi:10.1017/S1463423613000479

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):307310. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Reichert FF, Barros AJ, Domingues MR, Hallal PC. The role of perceived personal barriers to engagement in leisure-time physical activity. Am J Public Health. 2007;97(3):515519. PubMed ID: 17267731 doi:10.2105/AJPH.2005.070144

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155163. PubMed ID: 27330520 doi:10.1016/j.jcm.2016.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Landis J, Koch G. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159174. PubMed ID: 843571 doi:10.2307/2529310

  • 19.

    Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25(2):141151. doi:10.11613/BM.2015.015

  • 20.

    Carkeet A. Exact parametric confidence intervals for Bland-Altman limits of agreement. Optom Vis Sci. 2015;92(3):e71e80. PubMed ID: 25650900 doi:10.1097/OPX.0000000000000513

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Yu JY, Goldberg T, Lao N, Feldman BM, Goh YI. Electronic forms for patient reported outcome measures (PROMs) are an effective, time-efficient, and cost-minimizing alternative to paper forms. Pediatr Rheumatol Online J. 2021;19(1):67. PubMed ID: 33941208 doi:10.1186/s12969-021-00551-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Bureau USC. Data From: Quick Facts. Published 2021. https://www.census.gov/quickfacts/fact/table/US/PST045221

  • 23.

    Gell NM, Rosenberg DE, Demiris G, LaCroix AZ, Patel KV. Patterns of technology use among older adults with and without disabilities. Gerontologist. 2015;55(3):412421. PubMed ID: 24379019 doi:10.1093/geront/gnt166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Medero K, Merrill K Jr, Ross MQ. Modeling access across the digital divide for intersectional groups seeking web-based health information: national survey. J Med Internet Res. 2022;24(3):e32678. PubMed ID: 35289761 doi:10.2196/32678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Anthony DL, Campos-Castillo C, Lim PS. Who isn’t using patient portals and why? Evidence and implications from a national sample of US adults. Health Affairs. 2018;37(12):19481954. PubMed ID: 30633673 doi:10.1377/hlthaff.2018.05117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Staddon RV. Bringing technology to the mature classroom: age differences in use and attitudes. Int J Educ Technol High Educ. 2020;17(1):120. doi:10.1186/s41239-020-00184-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Levine DM, Lipsitz SR, Linder JA. Trends in seniors’ use of digital health technology in the United States, 2011–2014. JAMA. 2016;316(5):538540. PubMed ID: 27483069 doi:10.1001/jama.2016.9124

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1216 1216 20
Full Text Views 39 39 0
PDF Downloads 34 34 0