Physical Behaviors and Their Association With Adiposity in Men and Women From a Low-Resourced African Setting

in Journal of Physical Activity and Health

Click name to view affiliation

Amy E. MendhamSouth African Medical Research Council/Wits Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

Search for other papers by Amy E. Mendham in
Current site
Google Scholar
PubMed
Close
*
,
Julia H. GoedeckeSouth African Medical Research Council/Wits Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa

Search for other papers by Julia H. Goedecke in
Current site
Google Scholar
PubMed
Close
,
Nyuyki Clement KufeSouth African Medical Research Council/Wits Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Epidemiology and Surveillance Section, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa

Search for other papers by Nyuyki Clement Kufe in
Current site
Google Scholar
PubMed
Close
,
Melikhaya SoboyisiSouth African Medical Research Council/Wits Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

Search for other papers by Melikhaya Soboyisi in
Current site
Google Scholar
PubMed
Close
,
Antonia SmithMRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Antonia Smith in
Current site
Google Scholar
PubMed
Close
,
Kate WestgateMRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Kate Westgate in
Current site
Google Scholar
PubMed
Close
,
Soren BrageMRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom

Search for other papers by Soren Brage in
Current site
Google Scholar
PubMed
Close
, and
Lisa K. MicklesfieldSouth African Medical Research Council/Wits Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

Search for other papers by Lisa K. Micklesfield in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: We first explored the associations between physical behaviors and total and regional adiposity. Second, we examined how reallocating time in different physical behaviors was associated with total body fat mass in men and women from a low-income South African setting. Methods: This cross-sectional study included a sample of 692 participants (384 men and 308 women) aged 41–72 years. Physical behaviors were measured using integrated hip and thigh accelerometry to estimate total movement volume and time spent in sleeping, sitting/lying, standing, light physical activity, and moderate to vigorous physical activity (MVPA). Total body fat mass and regional adiposity were measured using dual-energy X-ray absorptiometry. Results: The associations between total movement volume and measures of regional obesity were mediated by total body adiposity. In men, reallocating 30 minutes of sitting/lying to 30 minutes of MVPA was associated with 1.0% lower fat mass. In women, reallocation of 30 minutes of sitting/lying to MVPA and 30 minutes of standing to MVPA were associated with a 0.3% and 1.4% lower fat mass, respectively. Conclusions: Although the association between physical behaviors and fat mass differed between men and women, the overall public health message is similar; reallocating sedentary time to MVPA is associated with a reduction in fat mass in both men and women.

Mendham (amy.mendham@uct.ac.za) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 110 KB)
    • Supplementary Table S1 (PDF 188 KB)
  • Collapse
  • Expand
  • 1.

    National Department of Health SSA, South African Medical Research Council, ICF. South Africa Demographic and Health Survey 2016: Key Indicators. NDoH, Stats SA, SAMRC and ICF Pretoria, South Africa and Rockville, Maryland. 2017.

    • Search Google Scholar
    • Export Citation
  • 2.

    Shisana O, Labadarios D, Rehle T, et al. The South African National Health and Nutrition Examination Survey (SANHANES-1). Cape Town; 2014.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2014;384(9945):766781. PubMed ID: 24880830 doi:10.1016/S0140-6736(14)60460-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kengne AP, Group NRFCN-RAW. Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. Int J Epidemiol. 2017;46(5):14211432. PubMed ID: 28582528 doi:10.1093/ije/dyx078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Mlangeni L, Makola L, Naidoo I, et al. Factors associated with physical activity in South Africa: evidence from a national population based survey. Open Public Health J. 2018;11(1):516525. doi:10.2174/1874944501811010516

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kruger HS, Venter CS, Vorster HH, Margetts BM. Physical inactivity is the major determinant of obesity in black women in the North West Province, South Africa: the THUSA study. Nutrition. 2002;18(5):422427. PubMed ID: 11985949 doi:10.1016/S0899-9007(01)00751-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Dempsey PC, Strain T, Khaw KT, Wareham NJ, Brage S, Wijndaele K. Prospective associations of accelerometer-measured physical activity and sedentary time with incident cardiovascular disease, cancer, and all-cause mortality. Circulation. 2020;141(13):11131115. PubMed ID: 32223676 doi:10.1161/CIRCULATIONAHA.119.043030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Lindsay T, Wijndaele K, Westgate K, et al. Joint associations between objectively measured physical activity volume and intensity with body-fatness. The Fenland study. Int J Obes. 2021;46(1):169177. PubMed ID: 34593963 doi:10.1038/s41366-021-00970-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ekelund U, Tarp J, Steene-Johannessen J, et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. Br Med J. 2019;366:l4570. PubMed ID: 31434697 doi:10.1136/bmj.l4570

    • Search Google Scholar
    • Export Citation
  • 10.

    Stamatakis E, Rogers K, Ding D, et al. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: a prospective study of 201,129 mid-aged and older adults. Int J Behav Nutr Phys Act. 2015;12(1):110. PubMed ID: 26419654 doi:10.1186/s12966-015-0280-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):14511462. PubMed ID: 33239350 doi:10.1136/bjsports-2020-102955

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;6(10):e1077e1086. PubMed ID: 30193830 doi:10.1016/S2214-109X(18)30357-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Barr AL, Partap U, Young EH, et al. Sociodemographic inequities associated with participation in leisure-time physical activity in sub-Saharan Africa: an individual participant data meta-analysis. BMC Public Health. 2020;20(1):113. PubMed ID: 32539702 doi:10.1186/s12889-020-08987-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gradidge PJL, Crowther NJ, Chirwa ED, Norris SA, Micklesfield LK. Patterns, levels and correlates of self-reported physical activity in urban black Soweto women. BMC Public Health. 2014;14(1):934. PubMed ID: 25200747 doi:10.1186/1471-2458-14-934

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Dugas LR, Bovet P, Forrester TE, et al. Comparisons of intensity-duration patterns of physical activity in the US, Jamaica and 3 African countries. BMC Public Health. 2014;14(1):117. PubMed ID: 25160601 doi:10.1186/1471-2458-14-882

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Cillekens B, Lang M, Van Mechelen W, et al. How does occupational physical activity influence health? An umbrella review of 23 health outcomes across 158 observational studies. Br J Sports Med. 2020;54(24):14741481. PubMed ID: 33239353 doi:10.1136/bjsports-2020-102587

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Haskell WL. Physical activity by self-report: a brief history and future issues. J Phys Act Health. 2012;9(suppl 1):S5S10. PubMed ID: 22287448 doi:10.1123/jpah.9.s1.s5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Mekary RA, Willett WC, Hu FB, Ding EL. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519527. PubMed ID: 19584129 doi:10.1093/aje/kwp163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Dahl-Petersen IK, Brage S, Bjerregaard P, Tolstrup J, Jørgensen ME. Physical activity and abdominal fat distribution in Greenland. Med Sci Sports Exerc. 2017;49(10):2064. PubMed ID: 28574874 doi:10.1249/MSS.0000000000001337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Grgic J, Dumuid D, Bengoechea EG, et al. Health outcomes associated with reallocations of time between sleep, sedentary behaviour, and physical activity: a systematic scoping review of isotemporal substitution studies. Int J Behav Nutr Phys Act. 2018;15(1):69. PubMed ID: 30001713 doi:10.1186/s12966-018-0691-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research—The focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiol Int J Fundam Appl Kinesiol. 2014;46(1):135146.

    • Search Google Scholar
    • Export Citation
  • 22.

    Boyle T, Vallance JK, Buman MP, Lynch BM. Reallocating time to sleep, sedentary time, or physical activity: associations with waist circumference and body mass index in breast cancer survivors. Cancer Epidemiol Biomarkers Prev. 2017;26(2):254260. PubMed ID: 27780817 doi:10.1158/1055-9965.EPI-16-0545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Mtintsilana A, Micklesfield LK, Chorell E, Olsson T, Goedecke JH. Fat redistribution and accumulation of visceral adipose tissue predicts type 2 diabetes risk in middle-aged black South African women: a 13-year longitudinal study. Nutr & Diabetes. 2019;9(1):112. PubMed ID: 30918247 doi:10.1038/s41387-019-0079-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Chantler S, Dickie K, Micklesfield LK, Goedecke JH. Longitudinal changes in body fat and its distribution in relation to cardiometabolic risk in black South African women. Metab Syndr Relat Disord. 2015;13(9):381388. PubMed ID: 26313235 doi:10.1089/met.2015.0021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Goedecke JH, Nguyen K, Kufe C, et al. Waist circumference thresholds predicting incident dysglycemia and type 2 diabetes in Black African men and women. Diabetes, Obes and Metabol. 2022;24(5):918927. PubMed ID: 35088498 doi:10.1111/dom.14655

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Micklesfield L, Westgate K, Smith A, et al. Physical activity behaviours of a middle-aged South African cohort as determined by integrated hip and thigh accelerometry. Medicine and Science in Sports and Exercise. 2022. doi:10.1249/MSS.0000000000002940

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Micklesfield LK, Goedecke JH, Punyanitya M, Wilson KE, Kelly TL. Dual‐energy X‐ray performs as well as clinical computed tomography for the measurement of visceral fat. Obesity. 2012;20(5):11091114. PubMed ID: 22240726 doi:10.1038/oby.2011.367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377381. PubMed ID: 18929686 doi:10.1016/j.jbi.2008.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Harlow SD, Gass M, Hall JE, et al. Executive summary of the stages of reproductive aging workshop+ 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol & Metab. 2012;97(4):11591168. PubMed ID: 22344196 doi:10.1210/jc.2011-3362

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Vancampfort D, Mugisha J, De Hert M, et al. Global physical activity levels among people living with HIV: a systematic review and meta-analysis. Disabil Rehabil. 2018;40(4):388397. PubMed ID: 27929355 doi:10.1080/09638288.2016.1260645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Assah F, Mbanya JC, Ekelund U, Wareham N, Brage S. Patterns and correlates of objectively measured free-living physical activity in adults in rural and urban cameroon. J Epidemiol Community Health. 2015;69(7):700707. PubMed ID: 25841243 doi:10.1136/jech-2014-205154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Thyfault JP, Bergouignan A. Exercise and metabolic health: beyond skeletal muscle. Diabetologia. 2020;63(8):14641474. PubMed ID: 32529412 doi:10.1007/s00125-020-05177-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I. A dose–response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. Int J Obes. 2007;31(12):17861797. PubMed ID: 17637702 doi:10.1038/sj.ijo.0803683

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    García‐Hermoso A, Saavedra JM, Ramírez‐Vélez R, Ekelund U, del Pozo‐Cruz B. Reallocating sedentary time to moderate-to-vigorous physical activity but not to light-intensity physical activity is effective to reduce adiposity among youths: a systematic review and meta-analysis. Obesity Reviews. 2017;18(9):10881095. PubMed ID: 28524399 doi:10.1111/obr.12552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Dohrn M, Kwak L, Oja P, Sjöström M, Hagströmer M. Replacing sedentary time with physical activity: a 15-year follow-up of mortality in a national cohort. Clin Epidemiol. 2018;10:179186. PubMed ID: 29416378 doi:10.2147/CLEP.S151613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Lee DC, Sui X, Church TS, Lavie CJ, Jackson AS, Blair SN. Changes in fitness and fatness on the development of cardiovascular disease risk factors: hypertension, metabolic syndrome, and hypercholesterolemia. J Am Coll Cardiol. 2012;59(7):665672. PubMed ID: 22322083 doi:10.1016/j.jacc.2011.11.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):13021310. PubMed ID: 27475271 doi:10.1016/S0140-6736(16)30370-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Dempsey PC, Biddle SJH, Buman MP, et al. New global guidelines on sedentary behaviour and health for adults: broadening the behavioural targets. Int J Behav Nutr Phys Act. 2020;17(1):112. PubMed ID: 33239026 doi:10.1186/s12966-020-01044-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Guthold R, Louazani SA, Riley LM, et al. Physical activity in 22 African countries: results from the world health organization stepwise approach to chronic disease risk factor surveillance. Am J Prev Med. 2011;41(1):5260. PubMed ID: 21665063 doi:10.1016/j.amepre.2011.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Lambert EV, Kolbe-Alexander T, Adlakha D, et al. Making the case for ‘physical activity security’: the 2020 WHO guidelines on physical activity and sedentary behaviour from a global south perspective. Br J Sports Med; 2020:54(24):14471448. PubMed ID: 33239348 doi:10.1136/bjsports-2020-103524

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Chastin SFM, Van Cauwenberg J, Maenhout L, Cardon G, Lambert EV, Van Dyck D. Inequality in physical activity, global trends by income inequality and gender in adults. Int J Behav Nutr Phys Act. 2020;17(1):142. PubMed ID: 33239036 doi:10.1186/s12966-020-01039-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Barr AL, Young EH, Sandhu MS. Objective measurement of physical activity: improving the evidence base to address non-communicable diseases in Africa. BMJ Glob Health. 2018;3(5):e001044. PubMed ID: 30364334 doi:10.1136/bmjgh-2018-001044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Brage S, Assah F, Msyamboza KP. Quantifying population levels of physical activity in Africa using wearable sensors: implications for global physical activity surveillance. BMJ Open Sport & Exerc Med. 2020;6(1):e000941. PubMed ID: 33868705 doi:10.1136/bmjsem-2020-000941

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Swindell N, Rees P, Fogelholm M, et al. Compositional analysis of the associations between 24-h movement behaviours and cardio-metabolic risk factors in overweight and obese adults with pre-diabetes from the PREVIEW study: cross-sectional baseline analysis. Int J Behav Nutr Phys Act. 2020;17(1):112. PubMed ID: 32131847 doi:10.1186/s12966-020-00936-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Strain T, Wijndaele K, Dempsey PC, et al. Wearable-device-measured physical activity and future health risk. Nature Med. 2020;26(9):13851391. PubMed ID: 32807930 doi:10.1038/s41591-020-1012-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Mendenhall E, Kohrt BA, Norris SA, Ndetei D, Prabhakaran D. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations. Lancet. 2017;389(10072):951963. PubMed ID: 28271846 doi:10.1016/S0140-6736(17)30402-6

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 595 595 130
Full Text Views 732 732 2
PDF Downloads 545 545 4