A Cloth Facemask Causes No Major Respiratory or Cardiovascular Perturbations During Moderate to Heavy Exercise

in Journal of Physical Activity and Health

Click name to view affiliation

Natália Mendes GuardieiroApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
Clinical Hospital, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Natália Mendes Guardieiro in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1571-7736
,
Gabriel BarretoApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Gabriel Barreto in
Current site
Google Scholar
PubMed
Close
,
Felipe Miguel MarticorenaApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Felipe Miguel Marticorena in
Current site
Google Scholar
PubMed
Close
,
Tamires Nunes OliveiraApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Tamires Nunes Oliveira in
Current site
Google Scholar
PubMed
Close
,
Luana Farias de OliveiraApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Luana Farias de Oliveira in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8225-5784
,
Ana Lucia de Sá PintoClinical Hospital, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
Laboratory of Assessment and Conditioning in Rheumatology (LACRE), Rheumatology Division, Universidade de São Paulo, São Paulo, SP, Brazil

Search for other papers by Ana Lucia de Sá Pinto in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5027-6521
,
Danilo Marcelo Leite do PradoApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Danilo Marcelo Leite do Prado in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0321-2151
,
Bryan SaundersApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Bryan Saunders in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0995-9077
, and
Bruno GualanoApplied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, SP, Brazil
Laboratory of Assessment and Conditioning in Rheumatology (LACRE), Rheumatology Division, Universidade de São Paulo, São Paulo, SP, Brazil
Food Research Center, University of São Paulo, São Paulo, SP, Brazil

Search for other papers by Bruno Gualano in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7100-8681*
Restricted access

Purpose: Investigate whether a cloth facemask could affect physiological and perceptual responses to exercise at distinct exercise intensities in untrained individuals. Methods: Healthy participants (n = 35; 17 men, age 30 [4] y, and 18 women, age 28 [5] y) underwent a progressive square wave test at 4 intensities: (1) 80% of ventilatory anaerobic threshold; (2) ventilatory anaerobic threshold; (3) respiratory compensation point; and (4) exercise peak (Peak) to exhaustion, 5-minute stages, with or without a triple-layered cloth facemask (Mask or No-Mask). Several physiological and perceptual measures were analyzed. Results: Mask reduced inspiratory capacity at all exercise intensities (P < .0001). Mask reduced respiratory frequency (P = .001) at Peak (−8.3 breaths·min−1; 95% confidence interval [CI], −5.8 to −10.8), respiratory compensation point (−6.9 breaths·min−1; 95% CI, −4.6 to −9.2), and ventilatory anaerobic threshold (−6.5 breaths·min−1; 95% CI, −4.1 to −8.8), but not at Baseline or 80% of ventilatory anaerobic threshold. Mask reduced tidal volume (P < .0001) only at respiratory compensation point (−0.5 L; 95% CI, −0.3 to −0.6) and Peak (−0.8 L; 95% CI, −0.6 to −0.9). Shallow breathing index was increased with Mask only at Peak (11.3; 95% CI, 7.5 to 15.1). Mask did not change HR, lactate, ratings of perceived exertion, blood pressure, or oxygen saturation. Conclusions: A cloth facemask reduced time to exhaustion but had no major impact on cardiorespiratory parameters and had a slight but clinically meaningless impact on respiratory variables at higher intensities. Moderate to heavy activity is safe and tolerable for healthy individuals while wearing a cloth facemask. ClinicalTrials.gov: NCT04887714.

Supplementary Materials

    • Supplementary Figure S1 (PDF 318 KB)
    • Supplementary Figure S2 (PDF 319 KB)
    • Supplementary Material S1 (PDF 147 KB)
    • Supplementary Material S2 (PDF 428 KB)
    • Supplementary Table S1 (PDF 388 KB)
  • Collapse
  • Expand
  • 1.

    Clase CM, Fu EL, Joseph M, et al. Cloth masks may prevent transmission of COVID-19: an evidence-based, risk-based approach. Ann Intern Med. 2020;173(6):489491. PubMed ID: 32441991 doi:10.7326/M20-2567

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020;26(5):676680. PubMed ID: 32371934 doi:10.1038/s41591-020-0843-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Stephenson J. CDC studies underscore continued importance of masks to prevent coronavirus spread. JAMA Health Forum. 2021;2(2):e210207. PubMed ID: 36218792 doi:10.1001/jamahealthforum.2021.0207

    • Search Google Scholar
    • Export Citation
  • 4.

    Burgess A, Horii M. Risk, ritual and health responsibilisation: Japan’s ‘safety blanket’ of surgical face mask-wearing. Sociol Health Illn. 2012;34(8):11841198. PubMed ID: 22443378 doi:10.1111/j.1467-9566.2012.01466.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Groves LM, Usagawa L, Elm J, et al. Community transmission of SARS-CoV-2 at three fitness facilities—Hawaii, June–July 2020. MMWR Morb Mortal Wkly Rep. 2021;70(9):316320. PubMed ID: 33661861 doi:10.15585/mmwr.mm7009e1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Driver S, Reynolds M, Brown K, et al. Effects of wearing a cloth face mask on performance, physiological and perceptual responses during a graded treadmill running exercise test. Br J Sports Med. 2022;56(2):107113. PubMed ID: 33849908 doi:10.1136/bjsports-2020-103758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Fikenzer S, Uhe T, Lavall D, et al. Effects of surgical and FFP2/N95 face masks on cardiopulmonary exercise capacity. Clin Res Cardiol. 2020;109(12):15221530. doi:10.1007/s00392-020-01704-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Shaw K, Butcher S, Ko J, Zello GA, Chilibeck PD. Wearing of cloth or disposable surgical face masks has no effect on vigorous exercise performance in healthy individuals. Int J Environ Res Public Health. 2020;17(21):8110. doi:10.3390/ijerph17218110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64(6):26222630. doi:10.1152/jappl.1988.64.6.2622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Burnley M, Jones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci. 2007;7(2):6379. doi:10.1080/17461390701456148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Whipp BJ, Ward SA, Rossiter HB. Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med Sci Sports Exerc. 2005;37(9):15741585. PubMed ID: 16177611 doi:10.1249/01.mss.0000177476.63356.22

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Duke JW. Sex hormones and their impact on the ventilatory responses to exercise and the environment. In: Hackney AC, ed. Sex Hormones, Exercise and Women: Scientific and Clinical Aspects. Springer International Publishing; 2017:1934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Freedson P, Katch VL, Sady S, Weltman A. Cardiac output differences in males and females during mild cycle ergometer exercise. Med Sci Sports. 1979;11(1):1619. PubMed ID: 481150

    • Search Google Scholar
    • Export Citation
  • 14.

    Mead J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am Rev Respir Dis. 1980;121(2):339342. PubMed ID: 7362140 doi:10.1164/arrd.1980.121.2.339

    • Search Google Scholar
    • Export Citation
  • 15.

    Sheel AW, Guenette JA, Yuan R, et al. Evidence for dysanapsis using computed tomographic imaging of the airways in older ex-smokers. J Appl Physiol. 2009;107(5):16221628. doi:10.1152/japplphysiol.00562.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dominelli PB, Ripoll JG, Cross TJ, et al. Sex differences in large conducting airway anatomy. J Appl Physiol. 2018;125(3):960965. PubMed ID: 30024341 doi:10.1152/japplphysiol.00440.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Christou S, Chatziathanasiou T, Angeli S, et al. Anatomical variability in the upper tracheobronchial tree: sex-based differences and implications for personalized inhalation therapies. J Appl Physiol. 2021;130(3):678707. PubMed ID: 33180641 doi:10.1152/japplphysiol.00144.2020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lewis DA, Kamon E, Hodgson JL. Physiological differences between genders. Implications for sports conditioning. Sports Med. 1986;3(5):357369. PubMed ID: 3529284 doi:10.2165/00007256-198603050-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):21912194. doi:10.1001/jama.2013.281053

    • Search Google Scholar
    • Export Citation
  • 20.

    McKay AKA, Stellingwerff T, Smith ES, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317331. PubMed ID: 34965513 doi:10.1123/ijspp.2021-0451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hagstromer M, Oja P, Sjostrom M. The international physical activity questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9(6):75562. PubMed ID: 16925881 doi:10.1079/phn2005898

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Atkinson G, Reilly T. Circadian variation in sports performance. Sports Med. 1996;21(4):292312. PubMed ID: 8726347 doi:10.2165/00007256-199621040-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Centers for Disease Control and Prevention. Use and Care of Masks. 2022. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover-guidance.html

    • Search Google Scholar
    • Export Citation
  • 24.

    Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. Am J Respir Crit Care Med. 2019;200(8):e70e88. PubMed ID: 31613151 doi:10.1164/rccm.201908-1590ST

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):12921301. PubMed ID: 8531628 doi:10.1249/00005768-199509000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Wasserman K, Whipp B, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236243. doi:10.1152/jappl.1973.35.2.236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Guenette JA, Chin RC, Cory JM, Webb KA, O’Donnell DE. Inspiratory capacity during exercise: measurement, analysis, and interpretation. Pulm Med. 2013;2013:956081. PubMed ID: 23476765 doi:10.1155/2013/956081

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Neder JA, Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests: II. Maximal respiratory pressures and voluntary ventilation. Braz J Med Biol. 1999;32(6):719727. PubMed ID: 10412550 doi:10.1590/S0100-879X1999000600007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Li Y, Tokura H, Guo YP, et al. Effects of wearing N95 and surgical facemasks on heart rate, thermal stress and subjective sensations. Int Arch Occup Environ Health. 2005;78(6):501509. PubMed ID: 15918037 doi:10.1007/s00420-004-0584-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Epstein D, Korytny A, Isenberg Y, et al. Return to training in the COVID-19 era: the physiological effects of face masks during exercise. Scand J Med Sci Sports. 2021;31(1):7075. PubMed ID: 32969531 doi:10.1111/sms.13832

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Shaw KA, Zello GA, Butcher SJ, Ko JB, Bertrand L, Chilibeck PD. The impact of face masks on performance and physiological outcomes during exercise: a systematic review and meta-analysis. Appl Physiol Nutr Metab. 2021;46(7):693703. doi:10.1139/apnm-2021-0143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Fukushi I, Nakamura M, Kuwana S-i. Effects of wearing facemasks on the sensation of exertional dyspnea and exercise capacity in healthy subjects. PLoS One. 2021;16(9):e0258104. PubMed ID: 34591935 doi:10.1371/journal.pone.0258104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Kouzy R, Abi Jaoude J, Kraitem A, et al. Coronavirus goes viral: quantifying the covid-19 misinformation epidemic on Twitter. Cureus. 2020;12(3):e7255. PubMed ID: 32292669 doi:10.7759/cureus.7255

    • Search Google Scholar
    • Export Citation
  • 35.

    Roozenbeek J, Schneider CR. Susceptibility to misinformation about COVID-19 around the world. 2020;7(10):201199. doi:10.1098/rsos.201199

    • Search Google Scholar
    • Export Citation
  • 36.

    Chandrasekaran B, Fernandes S. “Exercise with facemask; are we handling a devil’s sword?”—A physiological hypothesis. Med Hypotheses. 2020;144:110002. doi:10.1016/j.mehy.2020.110002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124(5):799815. PubMed ID: 30817262 doi:10.1161/CIRCRESAHA.118.312669

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology. 2013;28(5):330358. PubMed ID: 23997192 doi:10.1152/physiol.00019.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Mok A, Khaw KT, Luben R, Wareham N, Brage S. Physical activity trajectories and mortality: population based cohort study. BMJ. 2019;365:l2323. doi:10.1136/bmj.l2323

    • Search Google Scholar
    • Export Citation
  • 40.

    Gualano B, Lemes IR, Silva RP, et al. Association between physical activity and immunogenicity of an inactivated virus vaccine against SARS-CoV-2 in patients with autoimmune rheumatic diseases. Brain Behav Immun. 2021;101:4956. PubMed ID: 34954325 doi:10.1016/j.bbi.2021.12.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Gebel K, Ding D, Chey T, Stamatakis E, Brown WJ, Bauman AE. Effect of moderate to vigorous physical activity on all-cause mortality in middle-aged and older Australians. JAMA Intern Med. 2015;175(6):970977. PubMed ID: 25844882 doi:10.1001/jamainternmed.2015.0541

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Hupin D, Roche F, Gremeaux V, et al. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥ 60 years: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):12621267. PubMed ID: 26238869 doi:10.1136/bjsports-2014-094306

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    McNulty KL, Elliott-Sale KJ, Dolan E, et al. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: a systematic review and meta-analysis. Sports Med. 2020;50(10):18131827. PubMed ID: 32661839 doi:10.1007/s40279-020-01319-3

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 187 187 18
Full Text Views 157 157 136
PDF Downloads 117 117 95