Moving to an Activity-Friendly Community Can Increase Physical Activity

Click name to view affiliation

Chanam Lee Center for Health Systems & Design, Texas A&M University, College Station, TX, USA
Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, USA

Search for other papers by Chanam Lee in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7849-3939
,
Minjie Xu Center for Health Systems & Design, Texas A&M University, College Station, TX, USA
Health and Sustainability Program, Air Quality, Energy, and Health Division, Texas A&M Transportation Institute, Austin, TX, USA

Search for other papers by Minjie Xu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8125-0321 *
,
Xuemei Zhu Center for Health Systems & Design, Texas A&M University, College Station, TX, USA
Department of Architecture, Texas A&M University, College Station, TX, USA

Search for other papers by Xuemei Zhu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9703-6074
,
Samuel D. Towne Jr Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA
Center for Community Health and Aging, Texas A&M University, College Station, TX, USA
School of Global Health Management and Informatics, University of Central Florida, Orlando, FL, USA
Disability, Aging, and Technology Cluster, University of Central Florida, Orlando, FL, USA
Southwest Rural Health Research Center, Texas A&M University, College Station, TX, USA

Search for other papers by Samuel D. Towne Jr in
Current site
Google Scholar
PubMed
Close
,
Huiyan Sang Department of Statistics, Texas A&M University, College Station, TX, USA

Search for other papers by Huiyan Sang in
Current site
Google Scholar
PubMed
Close
,
Hanwool Lee Center for Health Systems & Design, Texas A&M University, College Station, TX, USA
Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX, USA

Search for other papers by Hanwool Lee in
Current site
Google Scholar
PubMed
Close
, and
Marcia G. Ory Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA
Center for Community Health and Aging, Texas A&M University, College Station, TX, USA

Search for other papers by Marcia G. Ory in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8036-2383
Restricted access

Background: Creating activity-friendly communities (AFCs) is an important strategy to increase physical activity (PA). While cross-sectional links between community environments and PA are well documented, their causal relationships remain insufficiently explored. Methods: Using the accelerometer and survey data collected from adults who moved to an AFC (cases) and similar non-AFC-residing adults who did not move (comparisons), this pre–post, case-comparison study examines if moving to an AFC increases PA. Data came from 115 participants (cases = 37, comparisons = 78) from Austin, Texas, who completed 2 waves of 1-weeklong data collection. Difference-in-difference analyses and fixed-effect models were used to test the significance of the pre–post differences in moderate-to-vigorous PA (MVPA) between cases and comparisons, for the full sample and the subsample of 37 pairs matched in key covariates using the Propensity Score Matching method. Results: Average treatment effect generated based on Propensity Score Matching and difference-in-difference showed that moving to this AFC led to an average of 10.88 additional minutes of daily MVPA (76.16 weekly minutes, P = .015). Fixed-effect models echoed the result with an increase of 10.39 minutes of daily MVPA after moving to the AFC. We also found that case participants who were less active at baseline and had higher income increased their MVPA more than their counterparts. Conclusions: This study showed that, among our study sample, moving to an AFC increased residents’ PA significantly when compared to their premove level and the comparison group. This causal evidence suggests the potential of AFCs as sustainable interventions for PA promotion.

  • Collapse
  • Expand
  • 1.

    U.S. Department of Health and Human Services. Step It Up! The Surgeon General’s Call to Action to Promote Walking and Walkable Communities. Office of the Surgeon General, U.S. Department of Health and Human Services; 2015.

    • Search Google Scholar
    • Export Citation
  • 2.

    U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans. U.S. Department of Health and Human Services; 2018.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bauman AE, Reis RS, Sallis JF, et al. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258271. PubMed ID: 22818938 doi:10.1016/S0140-6736(12)60735-1

    • Search Google Scholar
    • Export Citation
  • 4.

    Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27(1):297322. PubMed ID: 16533119 doi:10.1146/annurev.publhealth.27.021405.102100

    • Search Google Scholar
    • Export Citation
  • 5.

    Sallis JF, Floyd MF, Rodríguez DA, Saelens BE. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation. 2012;125(5):729737. PubMed ID: 22311885 doi:10.1161/CIRCULATIONAHA.110.969022

    • Search Google Scholar
    • Export Citation
  • 6.

    Whitfield GP, Carlson SA, Ussery EN. Environmental supports for physical activity, national health interview survey-2015. Am J Prev Med. 2018;54(2):294298. PubMed ID: 29246673 doi:10.1016/j.amepre.2017.09.013

    • Search Google Scholar
    • Export Citation
  • 7.

    Satariano WA, Ory MG, Lee C. Planned and built environments in public health. In: Prohaska TR, Anderson LA, Binstock RH, eds. Public Health in an Aging Society. Johns Hopkins University Press; 2012:327352.

    • Search Google Scholar
    • Export Citation
  • 8.

    Ding D, Nguyen B, Learnihan V, et al. Moving to an active lifestyle? A systematic review of the effects of residential relocation on walking, physical activity and travel behaviour. Br J Sports Med. 2018;52(12):789799. PubMed ID: 29858466 doi:10.1136/bjsports-2017-098833

    • Search Google Scholar
    • Export Citation
  • 9.

    Emmons KM, Doubeni CA, Fernandez ME, Miglioretti DL, Samet JM. National institutes of health pathways to prevention workshop: methods for evaluating natural experiments in obesity. Ann Intern Med. 2018;168(11):809814. PubMed ID: 29710235 doi:10.7326/M18-0501

    • Search Google Scholar
    • Export Citation
  • 10.

    Lee C, Newman G, Jourdan D, Ye X, Van Zandt S. Natural experiments in planning research. J Plan Educ Res. 2022;42(1):68. doi:10.1177/0739456X211061763

    • Search Google Scholar
    • Export Citation
  • 11.

    Wells NM, Yang Y. Neighborhood design and walking. A quasi-experimental longitudinal study. Am J Prev Med. 2008;34(4):313319. PubMed ID: 18374245 doi:10.1016/j.amepre.2008.01.019

    • Search Google Scholar
    • Export Citation
  • 12.

    Coogan PF, White LF, Adler TJ, Hathaway KM, Palmer JR, Rosenberg L. Prospective study of urban form and physical activity in the black women’s health study. Am J Epidemiol. 2009;170(9):11051117. PubMed ID: 19808635 doi:10.1093/aje/kwp264

    • Search Google Scholar
    • Export Citation
  • 13.

    Cao J, Ermagun A. Influences of LRT on travel behaviour: a retrospective study on movers in Minneapolis. Urban Studies. 2017;54(11):25042520. doi:10.1177/0042098016651569

    • Search Google Scholar
    • Export Citation
  • 14.

    Giles-Corti B, Bull F, Knuiman M, et al. The influence of urban design on neighbourhood walking following residential relocation: longitudinal results from the RESIDE study. Soc Sci Med. 2013;77:2030. PubMed ID: 23206559 doi:10.1016/j.socscimed.2012.10.016

    • Search Google Scholar
    • Export Citation
  • 15.

    Ding D, Williamson C, Nguyen B, et al. Infographic: the effects of residential relocation on walking, physical activity and travel behaviour. Br J Sports Med. 2019;53(23):14861487. PubMed ID: 30926630 doi:10.1136/bjsports-2018-100398

    • Search Google Scholar
    • Export Citation
  • 16.

    American Planning Association. National Planning Excellence Awards: Hud Secretary’s Opportunity & Empowerment Award, Mueller Redevelopment—City of Austin Economic Development. Published 2015. Accessed June 21, 2023. https://www.planning.org/awards/2015/muellerredevelopment.htm

    • Search Google Scholar
    • Export Citation
  • 17.

    U.S. GBC. Texas Neighborhood Breaks New Ground with LEED and SITES. Published 2021. Accessed June 21, 2023. https://www.usgbc.org/articles/texas-neighborhood-breaks-new-ground-leed-and-sites

    • Search Google Scholar
    • Export Citation
  • 18.

    U.S. Census Bureau. 2014–2018 ACS 5-Year Estimates. Published 2021. Accessed June 21, 2023. https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2018/5-year.html

    • Search Google Scholar
    • Export Citation
  • 19.

    Zhu X, Yu C-Y, Lee C, Lu Z. From walkable communities to active lifestyles: exploring causal pathways through a case study in Austin, Texas. J Plan Educ Res. 2020. doi:10.1177/0739456X19900528

    • Search Google Scholar
    • Export Citation
  • 20.

    Carr LJ, Dunsiger SI, Marcus BH. Walk score™ as a global estimate of neighborhood walkability. Am J Prev Med. 2010;39(5):460463. PubMed ID: 20965384 doi:10.1016/j.amepre.2010.07.007

    • Search Google Scholar
    • Export Citation
  • 21.

    Zhu X, Ory MG, Xu M, et al. Physical activity impacts of an activity-friendly community: a natural experiment study protocol. Front Public Health. 2022;10:929331. PubMed ID: 35784244 doi:10.3389/fpubh.2022.929331

    • Search Google Scholar
    • Export Citation
  • 22.

    Sasaki JE, John D, Freedson PS, Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011;14(5):411416. PubMed ID: 21616714 doi:10.1016/j.jsams.2011.04.003

    • Search Google Scholar
    • Export Citation
  • 23.

    Keadle SK, Shiroma EJ, Freedson PS, Lee I-M. Impact of accelerometer data processing decisions on the sample size, wear time and physical activity level of a large cohort study. BMC Public Health. 2014;14(1):1210. PubMed ID: 25421941 doi:10.1186/1471-2458-14-1210

    • Search Google Scholar
    • Export Citation
  • 24.

    Saint-Maurice PF, Berrigan D, Whitfield GP, et al. Amount, type, and timing of domain-specific moderate to vigorous physical activity among US adults. J Phys Act Health. 2021;18(suppl 1):S114S122. doi:10.1123/jpah.2021-0174

    • Search Google Scholar
    • Export Citation
  • 25.

    Scholes S, Mindell JS. Inequalities in participation and time spent in moderate-to-vigorous physical activity: a pooled analysis of the cross-sectional health surveys for England 2008, 2012, and 2016. BMC Public Health. 2020;20(1):361. doi:10.1186/s12889-020-08479-x

    • Search Google Scholar
    • Export Citation
  • 26.

    Martin KR, Koster A, Murphy RA, et al. Changes in daily activity patterns with age in U.S. men and women: national health and nutrition examination survey 2003–04 and 2005–06. J Am Geriatr Soc. 2014;62(7):12631271. PubMed ID: 24962323 doi:10.1111/jgs.12893

    • Search Google Scholar
    • Export Citation
  • 27.

    Kekalainen T, Tammelin TH, Hagger MS, et al. Personality, motivational, and social cognition predictors of leisure-time physical activity. Psychol Sport Exerc. 2022;60:102135. doi:10.1016/j.psychsport.2022.102135

    • Search Google Scholar
    • Export Citation
  • 28.

    Towne SD, Xu M, Zhu X, Ory MG, Lee S, Lee C. Differential effects of a global public health crisis on physical activity: evidence from a statewide survey from the United States. HERD. 2022;15(4):6380. PubMed ID: 35746822 doi:10.1177/19375867221107087

    • Search Google Scholar
    • Export Citation
  • 29.

    Twardzik E, Judd S, Bennett A, et al. Walk score and objectively measured physical activity within a national cohort. J Epidemiol Community Health. 2019;73(6):549556. PubMed ID: 30944171 doi:10.1136/jech-2017-210245

    • Search Google Scholar
    • Export Citation
  • 30.

    Towne SD Jr, Won J, Lee S, et al. Using walk score™ and neighborhood perceptions to assess walking among middle-aged and older adults. J Community Health. 2016;41(5):977988. PubMed ID: 26994989 doi:10.1007/s10900-016-0180-z

    • Search Google Scholar
    • Export Citation
  • 31.

    Duncan DT, Aldstadt J, Whalen J, Melly SJ, Gortmaker SL. Validation of walk score for estimating neighborhood walkability: an analysis of four US metropolitan areas. Int J Environ Res Public Health. 2011;8(11):41604179. PubMed ID: 22163200 doi:10.3390/ijerph8114160

    • Search Google Scholar
    • Export Citation
  • 32.

    Garrido MM, Kelley AS, Paris J, et al. Methods for constructing and assessing propensity scores. Health Serv Res. 2014;49(5):17011720. PubMed ID: 24779867 doi:10.1111/1475-6773.12182

    • Search Google Scholar
    • Export Citation
  • 33.

    Zhang Z, Kim HJ, Lonjon G, Zhu Y. AME big-data clinical trial collaborative group. Balance diagnostics after Propensity Score Matching. Ann Transl Med. 2019;7(1):16. PubMed ID: 30788363 doi:10.21037/atm.2018.12.10

    • Search Google Scholar
    • Export Citation
  • 34.

    Zhao QY, Luo J-C, Su Y, Zhang Y-J, Tu G-W, Luo Z. Propensity Score Matching with R: conventional methods and new features. Ann Transl Med. 2021;9(9):812. PubMed ID: 34268425 doi:10.21037/atm-20-3998

    • Search Google Scholar
    • Export Citation
  • 35.

    Yu C-Y, Xu M, Towne SD, Iman S. Assessing the economic benefits and resilience of complete streets in Orlando, FL: a natural experimental design approach. J Transp Health. 2018;8:169178. doi:10.1016/j.jth.2017.11.005

    • Search Google Scholar
    • Export Citation
  • 36.

    Xu M, Yu C-Y, Lee C, Frank LD. Single-family housing value resilience of walkable versus unwalkable neighborhoods during a market downturn: causal evidence and policy implications. Am J Health Promot. 2018;32(8):17141722. PubMed ID: 29699423 doi:10.1177/0890117118768765

    • Search Google Scholar
    • Export Citation
  • 37.

    Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399424. PubMed ID: 21818162 doi:10.1080/00273171.2011.568786

    • Search Google Scholar
    • Export Citation
  • 38.

    Steiner PM, Cook D. Matching and propensity scores. In: Little TD, ed. The Oxford Handbook of Quantitative Methods in Psychology. Vol 1. Oxford University Press; 2013:237258.

    • Search Google Scholar
    • Export Citation
  • 39.

    Taylor WC, Floyd MF, Whitt-Glover MC, Brooks J. Environmental justice: a framework for collaboration between the public health and parks and recreation fields to study disparities in physical activity. J Phys Act Health. 2007;4(suppl 1):S50S63. doi:10.1123/jpah.4.s1.s50

    • Search Google Scholar
    • Export Citation
  • 40.

    Ginis KAM, van der Ploeg HP, Foster C, et al. Participation of people living with disabilities in physical activity: a global perspective. Lancet. 2021;398(10298):443455. doi:10.1016/S0140-6736(21)01164-8

    • Search Google Scholar
    • Export Citation
  • 41.

    Sallis JF, Cerin E, Conway TL, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):22072217. PubMed ID: 27045735 doi:10.1016/S0140-6736(15)01284-2

    • Search Google Scholar
    • Export Citation
  • 42.

    Lu Y. Using Google street view to investigate the association between street greenery and physical activity. Landscape Urban Plann. 2019;191:103435. doi:10.1016/j.landurbplan.2018.08.029

    • Search Google Scholar
    • Export Citation
  • 43.

    Pearce N. Analysis of matched case-control studies. BMJ. 2016;352:i969. PubMed ID: 26916049 doi:10.1136/bmj.i969

  • 44.

    Rose S, Laan MJ. Why match? Investigating matched case-control study designs with causal effect estimation. Int J Biostat. 2009;5(1):1. PubMed ID: 20231866 doi:10.2202/1557-4679.1127

    • Search Google Scholar
    • Export Citation
  • 45.

    Khare SR, Vedel I. Recall bias and reduction measures: an example in primary health care service utilization. Fam Pract. 2019;36(5):672676. doi:10.1093/fampra/cmz042

    • Search Google Scholar
    • Export Citation
  • 46.

    Kärmeniemi M, Lankila T, Ikäheimo T, Koivumaa-Honkanen H, Korpelainen R. The built environment as a determinant of physical activity: a systematic review of longitudinal studies and natural experiments. Ann Behav Med. 2018;52(3):239251. PubMed ID: 29538664 doi:10.1093/abm/kax043

    • Search Google Scholar
    • Export Citation
  • 47.

    Leatherdale ST. Natural experiment methodology for research: a review of how different methods can support real-world research. Int J Soc Res Methodol. 2019;22(1):1935. doi:10.1080/13645579.2018.1488449

    • Search Google Scholar
    • Export Citation
  • 48.

    Mitchell EJ, Ahmed K, Breeman S, et al. It is unprecedented: trial management during the COVID-19 pandemic and beyond. Trials. 2020;21(1):784. PubMed ID: 32917258 doi:10.1186/s13063-020-04711-6

    • Search Google Scholar
    • Export Citation
  • 49.

    King G, Nielsen R. Why propensity scores should not be used for matching. Polit Anal. 2019;27(4):435454. doi:10.1017/pan.2019.11

  • 50.

    Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009;28(25):30833107. PubMed ID: 19757444 doi:10.1002/sim.3697

    • Search Google Scholar
    • Export Citation
  • 51.

    Li F, Morgan KL, Zaslavsky AM. Balancing covariates via propensity score weighting. J Am Stat Assoc. 2018;113(521):390400. doi:10.1080/01621459.2016.1260466

    • Search Google Scholar
    • Export Citation
  • 52.

    Carlson SA, Fulton JE, Pratt M, Yang Z, Adams EK. Inadequate physical activity and health care expenditures in the United States. Prog Cardiovasc Dis. 2015;57(4):315323. PubMed ID: 25559060 doi:10.1016/j.pcad.2014.08.002

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 617 617 50
Full Text Views 450 450 1
PDF Downloads 186 186 2