Associations of Cognitively Active Versus Passive Sedentary Behaviors and Cognition in Older Adults

Click name to view affiliation

Mariana Wingood Department of Implementation Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
Sticht Center for Healthy Aging and Alzheimer’s Prevention, Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Search for other papers by Mariana Wingood in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1617-0031 *
,
Nancy M. Gell Department of Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA

Search for other papers by Nancy M. Gell in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3172-8040
,
Dori E. Rosenberg Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA

Search for other papers by Dori E. Rosenberg in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1017-8833
,
Gregory J. Stoddard Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA

Search for other papers by Gregory J. Stoddard in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6292-276X
, and
Erin D. Bouldin Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
VA Salt Lake City Health Care System, Informatics, Decision-Enhancement, and Analytic Sciences Center, Salt Lake City, UT, USA

Search for other papers by Erin D. Bouldin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7550-309X
Restricted access

Background: Cognitively stimulating sedentary behavior (SB) may positively impact cognition. This study aimed to (1) describe participation across types of SB among older adults with and without cognitive impairment and (2) examine how baseline SB participation impacts cognition, longitudinally. Methods: We used National Health and Aging Trends Study data from rounds 6 to 11 for cross-sectional and longitudinal analyses. Participants were 2244 community-dwelling older adults who were selected for the SB module in round 6. The SBs were categorized as active (eg, hobbies) and passive (eg, television). Participants were also categorized as having intact or impaired orientation, memory, and executive function based on tests of orientation, recall, and the clock-drawing test. We calculated descriptive statistics characterizing SB by cognitive status. Aim 2 involved competing risks proportional hazard models of participants with intact cognition (n = 1574) to identify associations between baseline SB and changes in cognition, moves to institutional care, and death over 6 years. Results: Participants (40% ≥ 80 years, 55% female, 77% White non-Hispanic) averaged 8.75 (SD = 4.42) hours of daily SB, including 4.05 (SD = 2.32) hours of passive SB and 4.75 (SD = 3.13) hours of active SB. Active SB >3 hours per day was associated with a lower risk of impaired orientation (subdistribution hazard models = 0.60; P = .048) and memory (subdistribution hazard models = 0.62; P = .02). Baseline participation in passive SB did not impact the risk of having a change in cognition during rounds 7 to 11. Conclusion: Cognitive decline was lower among older adults who participated in more active SB. Thus, type of SB should be considered in examining the impact on cognition.

  • Collapse
  • Expand
  • 1.

    Pais R, Ruano L, Carvalho OP, Barros H. Global cognitive impairment prevalence and incidence in community dwelling older adults—a systematic review. Geriatrics. 2020;5(4):84. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):19851992. PubMed ID: 11735772 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Busse A, Angermeyer MC, Riedel-Heller SG. Progression of mild cognitive impairment to dementia: a challenge to current thinking. Br J Psychiatry. 2006;189(5):399404. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Henderson AS, Jorm AFDefinition, and epidemiology of dementia: a review. In: Maj M, Sartorius N, eds. Dementia. Wiley; 2000:168.

  • 5.

    Chen B, Wang M, He Q, et al. Impact of frailty, mild cognitive impairment and cognitive frailty on adverse health outcomes among community-dwelling older adults: a systematic review and meta-analysis. Front Med. 2022;9:1009794. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Zhu S, Sui Y, Shen Y, et al. Effects of virtual reality intervention on cognition and motor function in older adults with mild cognitive impairment or dementia: a systematic review and meta-analysis. Front Aging Neurosci. 2021;13:586999. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nguyen L, Murphy K, Andrews G. Immediate and long-term efficacy of executive functions cognitive training in older adults: a systematic review and meta-analysis. Psychol Bull. 2019;145(7):698733. PubMed ID: 30998045 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sprague BN, Freed SA, Webb CE, Phillips CB, Hyun J, Ross LA. The impact of behavioral interventions on cognitive function in healthy older adults: a systematic review. Ageing Res Rev. 2019;52:3252. PubMed ID: 31002885 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Coelho L, Hauck K, McKenzie K, et al. The association between sedentary behavior and cognitive ability in older adults. Aging Clin Exp Res. 2020;32(11):23392347. PubMed ID: 31898168 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Kesse-Guyot E, Charreire H, Andreeva VA, et al. Cross-sectional and longitudinal associations of different sedentary behaviors with cognitive performance in older adults. PLoS One. 2012;7(10):e47831.

    • Search Google Scholar
    • Export Citation
  • 11.

    Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN)—terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Diaz KM, Howard VJ, Hutto B, et al. Patterns of sedentary behavior and mortality in US middle-aged and older adults: a national cohort study. Ann Intern Med. 2017;167(7):465475. PubMed ID: 28892811 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Stefansdottir R, Gudmundsdottir S. Sedentary behavior and musculoskeletal pain: a five-year longitudinal Icelandic study. Public Health. 2017;149:7173. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Hallgren M, Dunstan DW, Owen N. Passive versus mentally active sedentary behaviors and depression. Exerc Sport Sci Rev. 2020;48(1):2027. PubMed ID: 31663866 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Taylor WC. Understanding variations in the health consequences of sedentary behavior: a taxonomy of social interaction, novelty, choice, and cognition. J Aging Phys Act. 2022;30(1):153161. PubMed ID: 34257158 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60(1):173196. doi:

  • 17.

    Salinas-Rodríguez A, Manrique-Espinoza B, Palazuelos-González R, Rivera-Almaraz A, Jáuregui A. Physical activity and sedentary behavior trajectories and their associations with quality of life, disability, and all-cause mortality. Eur Rev Aging Phys Act. 2022;19(1):13. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Salminen M, Laine J, Vahlberg T, et al. Factors associated with institutionalization among home-dwelling patients of urgent geriatric outpatient clinic: a 3-year follow-up study. Eur Geriatr Med. 2020;11(5):745751. PubMed ID: 32500517 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kasper J, Freedman V. National Health and Aging Trends Study round 1 user guide: Final release [PhD thesis]. Johns Hopkins University School of Public Health. 2012.

    • Search Google Scholar
    • Export Citation
  • 20.

    Freedman VA, Kasper JD. Cohort profile: the National Health and Aging Trends Study (NHATS). Int J Epidemiol. 2019;48(4):10441045g. PubMed ID: 31237935 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kasper JD, Freedman VA, Niefeld MR. Construction of Performance-Based Summary Measures of Physical Capacity in the National Health and Aging Trends Study. Johns Hopkins University School of Public Health; 2012. NHATS technical paper 4:2022–03.

    • Search Google Scholar
    • Export Citation
  • 22.

    Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85M94. PubMed ID: 8126356 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Aunger J, Wagnild J. Objective and subjective measurement of sedentary behavior in human adults: a toolkit. Am Journal Human Biol. 2022;34(1):e23546. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wanders L, Bakker EA, van Hout HPJ, et al. Association between sedentary time and cognitive function: a focus on different domains of sedentary behavior. Prev Med. 2021;153:106731. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kasper JD, Freedman VA, Spillman BC. Classification of Persons by Dementia Status in the National Health and Aging Trends Study. Johns Hopkins University School of Public Health; 2013; Technical paper. 5:14.

    • Search Google Scholar
    • Export Citation
  • 26.

    Mendez MF, Ala T, Underwood KL. Development of scoring criteria for the clock drawing task in Alzheimer’s disease. J Am Geriatr Soc. 1992;40(11):10951099. PubMed ID: 1401692 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Berger M, Schmid M, Welchowski T, Schmitz-Valckenberg S, Beyersmann J. Subdistribution hazard models for competing risks in discrete time. Biostat. 2020;21(3):449466.

    • Search Google Scholar
    • Export Citation
  • 28.

    Berger M, Schmid M, Welchowski T, Schmitz-Valckenberg S, Beyersmann J. Subdistribution hazard models for competing risks in discrete time. Biostatistics. 2020;21(3):449466. PubMed ID: 30418529 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kaombe TM, Manda SOIdentifying outlying and influential clusters in multivariate survival data models. In: Chen DG, Manda SOM, Chirwa TF, eds. Modern Biostatistical Methods for Evidence-Based Global Health Research. Springer; 2022:377410.

    • Search Google Scholar
    • Export Citation
  • 30.

    Harvey PD. Domains of cognition and their assessment. Dialogues Clin Neurosci. 2022;21(3):227237.

  • 31.

    Iizuka A, Suzuki H, Ogawa S, et al. Can cognitive leisure activity prevent cognitive decline in older adults? A systematic review of intervention studies. Geriatr Gerontol Int. 2019;19(6):469482. PubMed ID: 31020777 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Chaddock-Heyman L, Loui P, Weng TB, Weisshappel R, McAuley E, Kramer AF. Musical training and brain volume in older adults. Brain Sci. 2021;11(1):50. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Mansens D, Deeg D, Comijs H. The association between singing and/or playing a musical instrument and cognitive functions in older adults. Aging Ment Health. 2018;22(8):970977. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Mammarella N, Fairfield B, Cornoldi C. Does music enhance cognitive performance in healthy older adults? The vivaldi effect. Aging Clin Exp Res. 2007;19(5):394399. PubMed ID: 18007118 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Higuti AY, Barbosa SRM, Corrêa LM, Izzo TF, Ansai JH. Effects of listening to music and practicing physical exercise on functional and cognitive aspects in institutionalized older adults with dementia: pilot study. Explore. 2021;17(4):292296. PubMed ID: 32771267 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Shulman KI. Clock-drawing: is it the ideal cognitive screening test? Int J Geriatr Psychiatry. 2000;15(6):548561. PubMed ID: 10861923 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Peters R, Pinto EM. Predictive value of the clock drawing test. A review of the literature. Dement Geriatr Cogn Disord. 2008;26(4):351355. PubMed ID: 18852487 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Paula JJ, Miranda DM, Moraes EN, Malloy-Diniz LF. Mapping the clockworks: what does the clock drawing test assess in normal and pathological aging? Arq Neuropsiquiatr. 2013;71(10):763768. PubMed ID: 24212511 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Olanrewaju O, Stockwell S, Stubbs B, Smith L. Sedentary behaviours, cognitive function, and possible mechanisms in older adults: a systematic review. Aging Clin Exp Res. 2020;32(6):969984. PubMed ID: 32026419 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Fancourt D, Steptoe A. Television viewing and cognitive decline in older age: findings from the English longitudinal study of ageing. Sci Rep. 2019;9(1):2851.

    • Search Google Scholar
    • Export Citation
  • 41.

    Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dementia. 2015;11(6):718726. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Kelly ME, Duff H, Kelly S, et al. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. Syst Rev. 2017;6(1):269. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet. 2020;396(10248):413446. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    James BD, Wilson RS, Barnes LL, Bennett DA. Late-life social activity and cognitive decline in old age. J Int Neuropsychol Soc. 2011;17(6):9981005. PubMed ID: 22040898 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Bakrania K, Edwardson CL, Khunti K, Bandelow S, Davies MJ, Yates T. Associations between sedentary behaviors and cognitive function: cross-sectional and prospective findings from the UK Biobank. Am J Epidemiol. 2018;187(3):441454. PubMed ID: 28992036 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Reinhard E, Carrino L, Courtin E, van Lenthe FJ, Avendano M. Public transportation use and cognitive function in older age: a quasiexperimental evaluation of the free bus pass policy in the United Kingdom. Am J Epidemiol. 2019;188(10):17741783. PubMed ID: 31251811 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Prince SA, Cardilli L, Reed JL, et al. A comparison of self-reported and device measured sedentary behaviour in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2020;17:31.

    • Search Google Scholar
    • Export Citation
  • 48.

    Aguilar-Farías N, Brown WJ, Olds TS, Peeters GG. Validity of self-report methods for measuring sedentary behaviour in older adults. J Sci Med Sport. 2015;18(6):662666. PubMed ID: 25172367 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 702 702 287
Full Text Views 45 45 31
PDF Downloads 40 40 19