Development and Validation of a Regression Model to Estimate VO2peak from PACER 20-m Shuttle Run Performance

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background:

The purpose of this study was to develop and cross-validate a regression model to estimate VO2peak from PACER performance in 12- to 14-year-old males and females.

Methods:

A sample of 135 participants had VO2peak measured during a maximal treadmill test and completed the PACER 20-m shuttle run. The sample was randomly split into validation (n = 90) and cross-validation (n = 45) samples. The validation sample was used to develop the regression equation to estimate VO2peak from PACER laps, gender, and body mass.

Results:

The multiple correlation (R) was .66 and standard error of estimate (SEE) was 6.38 ml·kg−1·min−1. Accuracy of the model was confirmed on the cross-validation sample. The regression equation developed on the total sample was: VO2peak = 47.438 + (PACER*0.142) + (Gender[m=1, f=0]*5.134) − (body mass [kg]*0.197), R = .65, SEE = 6.38 ml·kg–1·min–1.

Conclusions:

The model developed in this study was more accurate than the Leger et al. model and allows easy conversion of PACER laps to VO2peak.

Mahar, Rowe, and Crotts are with the Activity Promotion Laboratory, Dept. of Exercise and Sport Science, East Carolina University, Greenville, NC 27858. Welk is with the Dept. of Health and Human Performance, Iowa State University, Ames, IA 50011. McIver is with the Dept. of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208.