Click name to view affiliation
Physical activity is important in ill-health. Inexpensive, accurate and precise devices could help assess daily activity. We integrated novel activity-sensing technology into an earpiece used with portable music-players and phones; the physical-activity-sensing earpiece (PASE). Here we examined whether the PASE could accurately and precisely detect physical activity and measure its intensity and thence predict energy expenditure.
Experiment 1: 18 subjects wore PASE with different body postures and during graded walking. Energy expenditure was measured using indirect calorimetry. Experiment 2: 8 subjects wore the earpiece and walked a known distance. Experiment 3: 8 subjects wore the earpiece and ‘jogged’ at 3.5mph.
The earpiece correctly distinguished lying from sitting/standing and distinguished standing still from walking (76/76 cases). PASE output showed excellent sequential increases with increased in walking velocity and energy expenditure (r2 > .9). The PASE prediction of free-living walking velocity was, 2.5 ± (SD) 0.18 mph c.f. actual velocity, 2.5 ± 0.16 mph. The earpiece successfully distinguished walking at 3.5 mph from ‘jogging’ at the same velocity (P < .001).
The subjects tolerated the earpiece well and were comfortable wearing it. The PASE can therefore be used to reliably monitor free-living physical activity and its associated energy expenditure.
Manohar, McCrady, and Levine are with the Endocrine Research Unit, Mayo Clinic, Rochester, MN. Pavlidis is with the Dept of Computer Science, University of Houston, TX.