Combined Exercise Modulates Cortisol, Testosterone, and Immunoglobulin A Levels in Individuals Living With HIV/AIDS

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: Combined exercise (CE) has been recommended for individuals living with HIV/AIDS (ILWHA) under antiretroviral therapy. However, depending on the intensity and duration, physical exercise may occasionally increase inflammatory parameters and reduce immunological responses that if not reversed, cause health injury specifically in this population. Information about immunological and hormonal responses after CE in ILWHA has not been completely elucidated. Therefore, the aim is to verify the acute effects of CE on cortisol, testosterone, immunoglobulin A, and pro-inflammatory and anti-inflammatory cytokines over 24 hours in ILWHA. Methods: Noninfected individuals and ILWHA undergone 5 sessions of CE prior to the acute assessment session. Seventy-two hours after the last session, the subjects were submitted to one session of CE (aerobic exercise: 25 min at 60–70% reserve heart rate and resistance exercise: 3 sets of 15 maximum repetitions of 6 exercises). Saliva samples were collected before, immediately, 6 and 24 hours after CE. Results: CE reduced cortisol (6 h: 2.54 [0.58] vs 0.65 [0.22] pg·mL−1; P = .02), increased testosterone (all moments) and immunoglobulin A levels (24 h: 255.3 [44.7] vs 349.2 [41.9] μm·mL−1; P = .01) without significant difference in cytokines levels in ILWHA. Conclusion: CE modulates cortisol, testosterone, and immunoglobulin A levels without the change in immunological parameters in ILWHA.

Melo is with the Laboratory of Exercise Physiology (LAFISE), Federal University of Minas Gerais, Belo Horizonte, Brazil. Guariglia is with Estácio de Sá de Ourinhos University, Ourinhos-SP, Brazil. Pedro, Peres, and Franzói de Moraes are with the Department of Physiological Sciences, State University of Maringá, Maringá, Brazil. Bertolini is with the Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil. de Paula Ramos is with the Department of Histology, Biology Science Center, State University of Londrina, Londrina, Brazil. Franzói de Moraes is also with the Laboratory of Exercise Physiology—LabFise, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil.

Franzói de Moraes (smfmoraes@uem.br) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Booth FWRoberts CKLaye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):11431211. doi:

  • 2.

    Feinstein MJBahiru EAchenbach Cet al. Patterns of cardiovascular mortality for HIV-infected adults in the United States: 1999 to 2013. Am J Cardiol. 2016;117(2):214220. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    O’Brien KKTynan A-MNixon SAGlazier RH. Effectiveness of aerobic exercise for adults living with HIV: systematic review and meta-analysis using the Cochrane Collaboration protocol. BMC Infect Dis. 2016;16(1):182. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dolan SEFrontera WLibrizzi Jet al. Effects of a supervised home-based aerobic and progressive resistance training regimen in women infected with human immunodeficiency virus. Arch Intern Med. 2006;166(11):1225. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Dudgeon WDJaggers JRPhillips KDet al. Moderate-intensity exercise improves body composition and improves physiological markers of stress in HIV-infected men. ISRN AIDS. 2012;2012:145127. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hand GAPhillips KDDudgeon WDWilliam Lyerly GLarry Durstine JBurgess SE. Moderate intensity exercise training reverses functional aerobic impairment in HIV-infected individuals. AIDS Care. 2008;20(9):10661074. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Guariglia DAPedro REDeminice RRosa FTPeres SBFranzói De Moraes SM. Effect of combined training on body composition and metabolic variables in people living with HIV: a randomized clinical trial. Cytokine. 2018;111:505510. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pedro REGuariglia DAOkuno NMDeminice RPeres SBMoraes SMF. Effects of 16 weeks of concurrent training on resting heart rate variability and cardiorespiratory fitness in people living with HIV/AIDS using antiretroviral therapy: a randomized clinical trial. J Strength Cond Res. 2016;30(12):34943502. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Alves GNTavares AMVieira PJCSprinz ERibeiro JP. Oral L-arginine modulates blood lactate and interleukin-6 after exercise in HIV-infected men. Int J Sports Med. 2014;35(4):339343. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dudgeon WDPhillips KDDurstine JLet al. Individual exercise sessions alter circulating hormones and cytokines in HIV-infected men. Appl Physiol Nutr Metab. 2010;35(4):560568. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Melo BPPedro REGuariglia DAPeres SBDe Moraes SMF. Acute responses of physical exercise in people infected by HIV: a systematic review. Rev Bras Med do Esporte. 2017;23(2). doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Tanaka HMonahan KDSeals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153156. doi:

  • 13.

    Hill EEZack EBattaglini CViru MViru AHackney AC. Exercise and circulating Cortisol levels: the intensity threshold effect. J Endocrinol Invest. 2008;31(7):587591. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bozovic DRacic MIvkovic N. Salivary cortisol levels as a biological marker of stress reaction. Med Arch. 2013;67(5):374377.

  • 15.

    Coutinho AEChapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):213. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hellhammer DHWüst SKudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163171. doi:

  • 17.

    Cohen SNathan JAGoldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):5874. doi:

  • 18.

    Grinspoon SMulligan K. Weight loss and wasting in patients infected with human immunodeficiency virus. Clin Infect Dis. 2003;36(s2):S69S78. doi:

  • 19.

    Morley JEThomas DRWilson M-M. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83(4):735743. doi:

  • 20.

    Coffey VGHawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737763.

  • 21.

    Egan BZierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162184. doi:

  • 22.

    Fiuza-Luces CGaratachea NBerger NALucia A. Exercise is the Real Polypill. Physiology. 2013;28(5):330358. doi:

  • 23.

    Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219(Pt 2):205213. doi:

  • 24.

    Gleeson MPyne DB. Respiratory inflammation and infections in high-performance athletes. Immunol Cell Biol. 2016;94(2):124131. doi:

  • 25.

    Papacosta ENassis GP. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport. 2011;14(5):424434. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Neville VGleeson MFolland JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40(7):12281236. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rosa LTeixeira ALira FTufik SMello MSantos R. Moderate acute exercise (70% VO2 peak) induces TGF-β, α-amylase and IgA in saliva during recovery. Oral Dis. 2014;20(2):186190. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sari-Sarraf VReilly TDoran D. Salivary IgA response to intermittent and continuous exercise. Int J Sports Med. 2006;27(11):849855. doi:

  • 29.

    Usui TYoshikawa TOrita Ket al. Changes in salivary antimicrobial peptides, immunoglobulin A and cortisol after prolonged strenuous exercise. Eur J Appl Physiol. 2011;111(9):20052014. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Christeff NMelchior J-Cde Truchis PPerronne CGougeon M-L. Increased serum interferon alpha in HIV-1 associated lipodystrophy syndrome. Eur J Clin Invest. 2002;32(1):4350.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lihn ASRichelsen BPedersen SBet al. Increased expression of TNF-α, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am J Physiol Metab. 2003;285(5):E1072E1080. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Bauer A-MSternfeld THorster SSchunk MGoebel F-DBogner J. Kinetics of lactate metabolism after submaximal ergometric exercise in HIV-infected patients. HIV Med. 2004;5(5):371376. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cade WTReeds DNMittendorfer Bet al. Blunted lipolysis and fatty acid oxidation during moderate exercise in HIV-infected subjects taking HAART. Am J Physiol Metab. 2007;292(3):E812E819. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Deresz LFSprinz EKramer ASet al. Regulation of oxidative stress in response to acute aerobic and resistance exercise in HIV-infected subjects: a case-control study. AIDS Care. 2010;22(11):14101417. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Phillips EJOttaway CAFreedman Jet al. The Effect of Exercise on Lymphocyte Redistribution and Leucocyte Function in Asymptomatic HIV-Infected Subjects. Brain Behav Immun. 1997;11(3):217227. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ullum HPalmø JHalkjaer-Kristensen Jet al. The effect of acute exercise on lymphocyte subsets, natural killer cells, proliferative responses, and cytokines in HIV-seropositive persons. J Acquir Immune Defic Syndr. 1994;7(11):11221133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Pinto SSAlberton CLBagatini NCet al. Neuromuscular adaptations to water-based concurrent training in postmenopausal women: effects of intrasession exercise sequence. Age. 2015;37(1):9751. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Shirtcliff EAGranger DASchwartz ECurran MJ. Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology. 2001;26(2):165173. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Slavish DCGraham-Engeland JESmyth JMEngeland CG. Salivary markers of inflammation in response to acute stress. Brain Behav Immun. 2015;44:253269. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 223 223 168
Full Text Views 6 6 6
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar