Associations Between Anthropometric Indicators in Early Life and Cardiorespiratory Fitness, Physical Activity, and Sedentary Time in Adolescence

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: To explore the associations between birth weight and body mass index (BMI) from 6 months to 6 years of age, with cardiorespiratory fitness (CRF), physical activity, and sedentary time in adolescence. Methods: Retrospective school-based study with 539 adolescents (292 girls), mean age of 13.94 (1.62) years. Anthropometric data from birth up to 6 years were extracted from individual child health booklets. CRF was estimated by 20-m shuttle run test. Physical activity and sedentary time were assessed with accelerometers. Results: Birth weight was not associated with any outcome measured in adolescence. From the age of 6 months onwards in girls, and from 3 years in boys, BMI associated inversely with CRF in adolescence. In girls, BMI (at 12 mo and at 3 y of age) associated positively with sedentary time in adolescence, but not with physical activity. In boys, positive associations between BMI at the ages of 3, 5, and 6 years old and time spent in some intensities of physical activity in adolescence were found. Conclusions: BMI during the early years was negatively associated with CRF in adolescence, in a consistent way, for both genders, but with physical activity and sedentary time the associations were scarce and inconsistent, depending on the gender.

Oliveira-Santos, Santos, Moreira, Abreu, Lopes, and Mota are with the Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal. Abreu is also with the Faculty of Psychology, Education and Sports, Lusófona University of Porto, Porto, Portugal. Agostinis-Sobrinho is with the Faculty of Health Sciences, Klaipeda University, Klaipeda, Lithuania.

Oliveira-Santos (jomios@gmail.com) is corresponding author.
  • 1.

    Twig G, Yaniv G, Levine H, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):24302440. PubMed ID: 27074389 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Evensen E, Wilsgaard T, Furberg AS, Skeie G. Tracking of overweight and obesity from early childhood to adolescence in a population-based cohort—the Tromsø Study, Fit Futures. BMC Pediatr. 2016;16(1):64. PubMed ID: 27165270 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Barker DJP. Obesity and early life. Obes Rev. 2007;8:4549. PubMed ID: 17316301 doi:

  • 4.

    Ye R, Pei L, Ren A, Zhang Y, Zheng X, Liu JM. Birth weight, maternal body mass index, and early childhood growth: a prospective birth cohort study in China. J Epidemiol. 2010;20(6):421428. PubMed ID: 20814166 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vaag A. Low birth weight and early weight gain in the metabolic syndrome: consequences for infant nutrition. Int J Gynaecol Obstet. 2009;104:S32S34. PubMed ID: 19155006 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Leunissen RW, Stijnen T, Hokken-Koelega AC. Influence of birth size on body composition in early adulthood: the programming factors for growth and metabolism (PROGRAM)-study. Clin Endocrinol. 2009;70(2):245251. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Katzmarzyk PT. Physical activity, sedentary behavior, and health: paradigm paralysis or paradigm shift? Diabetes. 2010;59(11):27172725. PubMed ID: 20980470 doi:

  • 8.

    Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):111. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ekelund U. Cardiorespiratory fitness, exercise capacity and physical activity in children: are we measuring the right thing? Arch Dis Child. 2008;93(6):455456. PubMed ID: 18495907 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Boreham CA, Murray L, Dedman D, Davey Smith G, Savage JM, Strain JJ. Birthweight and aerobic fitness in adolescents: the Northern Ireland Young Hearts Project. Public Health. 2001;115(6):373379. PubMed ID: 11781846

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lawlor DA, Cooper AR, Bain C, Davey Smith G, Irwin A, Riddoch C, Ness A. Associations of birth size and duration of breast feeding with cardiorespiratory fitness in childhood: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Eur J Epidemiol. 2008;23(6):411422. PubMed ID: 18470625 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ridgway CL, Brage S, Sharp SJ, et al. Does birth weight influence physical activity in youth? A combined analysis of four studies using objectively measured physical activity. PLoS One. 2011;6(1):e16125. PubMed ID: 21264270 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hallal PC, Dumith SC, Ekelund U, Reichert FF, Menezes AM, Victora CG, Wells JC. Infancy and childhood growth and physical activity in adolescence: prospective birth cohort study from Brazil. Int J Behav Nutr Phys Act. 2012;9(1):82. PubMed ID: 22747581 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hildebrand M, Oglund GP, Wells JC, Ekelund U. Prenatal, birth and early life predictors of sedentary behavior in young people: a systematic review. Int J Behav Nutr Phys Act. 2016;13(1):63. PubMed ID: 27268003 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Salonen MK, Kajantie E, Osmond C, et al. Developmental origins of physical fitness: the Helsinki Birth Cohort Study. PLoS One. 2011;6(7):e22302. PubMed ID: 21799817 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Andersen LG, Angquist L, Gamborg M, et al. Birth weight in relation to leisure time physical activity in adolescence and adulthood: meta-analysis of results from 13 Nordic cohorts. PLoS One. 2009;4(12):e8192. PubMed ID: 20016780 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Oliveira-Santos J, Santos R, Moreira C, Abreu S, Lopes L, Agostinis C, Mota J. Ability of measures of adiposity in identifying adverse levels of inflammatory and metabolic markers in adolescents. Child Obes. 2016;12(2):135143. PubMed ID: 26824273 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):21912194. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    WHO, UNICEF. Low birthweight: country, regional and global estimates. New York, NY: UNICEF; 2004:31.

  • 20.

    WHO. WHO child growth standards: height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva, Switzerland: World Health Organization; 2006:312.

    • Search Google Scholar
    • Export Citation
  • 21.

    WHO. Growth reference 5-19 years. BMI-for-age (5-19 years). 2007. http://www.who.int/growthref/who2007_bmi_for_age/en/. Accessed May 24, 2017.

    • Export Citation
  • 22.

    Tanner JM. Growth at adolescence. 2nd ed. Oxford, UK: Blackwell Scientific Publications; 1962:326.

  • 23.

    Ruiz JR, Castro-Piñero J, España-Romero V, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011;45(6):518524.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mahar MT, Guerieri AM, Hanna MS, Kemble CD. Estimation of aerobic fitness from 20-m multistage shuttle run test performance. Am J Prev Med. 2011;41(4):S117S123. PubMed ID: 21961611 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. PubMed ID: 18949660 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):13601368. PubMed ID: 21131873 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Currie C, Molcho M, Boyce W, Holstein B, Torsheim T, Richter M. Researching health inequalities in adolescents: the development of the Health Behaviour in School-Aged Children (HBSC) family affluence scale. Soc Sci Med. 2008;66(6):14291436. PubMed ID: 18179852 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Serra-Majem L, Ribas L, Ngo J, Ortega RM, Garcia A, Perez-Rodrigo C, Aranceta J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004;7(7):931935. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ros E, Martinez-Gonzalez MA, Estruch R, Salas-Salvado J, Fito M, Martinez JA, Corella D. Mediterranean diet and cardiovascular health: teachings of the PREDIMED study. Advances in Nutrition. 2014;5(3):330S336S. PubMed ID: 24829485 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Schwingshackl L, Hoffmann G. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies. Cancer Med. 2015;4(12):19331947. PubMed ID: 26471010 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Peneau S, Rouchaud A, Rolland-Cachera MF, Arnault N, Hercberg S, Castetbon K. Body size and growth from birth to 2 years and risk of overweight at 7–9 years. Int J Pediatr Obes. 2011;6:e162e169. PubMed ID: 20979545

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ortega FB, Labayen I, Ruiz JR, et al. Are muscular and cardiovascular fitness partially programmed at birth? Role of body composition. J Pediatr. 2009;1:6166.e1. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hallal PC, Wells JC, Reichert FF, Anselmi L, Victora CG. Early determinants of physical activity in adolescence: prospective birth cohort study. BMJ. 2006;332(7548):10021007. PubMed ID: 16601016 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mattocks C, Ness A, Deere K, Tilling K, Leary S, Blair SN, Riddoch C. Early life determinants of physical activity in 11 to 12 year olds: cohort study. BMJ. 2008;336(7634):2629. PubMed ID: 18037616 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    de Kroon ML, Renders CM, van Wouwe JP, Hirasing RA, van Buuren S. Identifying young children without overweight at high risk for adult overweight: the Terneuzen Birth Cohort. Int J Pediatr Obes. 2011;6(2–2):e187e195. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Juonala M, Magnussen CG, Berenson GS, et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N Engl J Med. 2011;365(20):18761885. PubMed ID: 22087679 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    van Deutekom AW, Chinapaw MJ, Vrijkotte TG, Gemke RJ. The association of birth weight and infant growth with physical fitness at 8-9 years of age—the ABCD study. Int J Obes. 2015;39(4):593600. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Fuller-Tyszkiewicz M, Skouteris H, Hardy LL, Halse C. The associations between TV viewing, food intake, and BMI. A prospective analysis of data from the Longitudinal Study of Australian Children. Appetite. 2012;59(3):945948. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Hands BP, Chivers PT, Parker HE, Beilin L, Kendall G, Larkin D. The associations between physical activity, screen time and weight from 6 to 14 yrs: the Raine Study. J Sci Med Sport. 2011;14(5):397403. PubMed ID: 21531620 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30(2):252258. PubMed ID: 9502354 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 214 214 74
Full Text Views 2 2 0
PDF Downloads 3 3 0