The Relationship Between Physical Activity and Inhibition in Children With and Without Motor Impairments

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: To examine the relationship between physical activity (PA) and inhibition in boys and girls with motor impairments compared with children with typical development. Methods: The participants were 58 (26 motor impairments and 32 typical development) children aged 7–12 years who met the inclusion criteria. PA was assessed using accelerometers for 7 consecutive days. The time spent in PA of different intensity levels (light, moderate, and vigorous) were analyzed for weekdays and weekends. Using a visuospatial attention paradigm, inhibition was evaluated by the difference in reaction time between invalid and valid cue conditions. Generalized linear mixed models were used to determine the associations of inhibition with PA and motor ability by sex. Results: Boys and children with typical development had shorter reaction times in inhibition than girls (P < .001) and children with motor impairments (P < .05), respectively. Motor ability (b = 189.98) and vigorous PA on weekdays (b = −43.18) were significant predictors of inhibition in girls only. Conclusions: The results indicate a positive relationship between vigorous PA (on weekdays) and inhibition in children (girls), moderated by sex and motor ability. Effective interventions that promote vigorous PA for children both in and out of school should be designed to foster their executive function development.

Yu is with the Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong, and the Department of Sport and Exercise Science, Zhejiang University, Hangzhou, China. Tsai is with the Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan. Pan is with the Department of Physical Education, National Kaohsiung Normal University, Kaohsiung, Taiwan. Li is with the Physical Education Unit, Shenzhen University, Shenzhen, China. Sit is with the Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, Hong Kong.

Sit (sithp@cuhk.edu.hk) is corresponding author.
  • 1.

    Donnelly JE, Hillman CH, Castelli D, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48(6):11971222. PubMed ID: 27182986 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. Can Med Assoc J. 2006;174(6):801809. doi:.

  • 3.

    Aubert S, Barnes JD, Abdeta C, et al. Global matrix 3.0 physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15(suppl 2):S251S273. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010.

    • Search Google Scholar
    • Export Citation
  • 5.

    US Department of Health and Human Service. Physical Activity Guidelines for Americans. 2nd ed. Washington, DC: US Department of Health and Human Services; 2018.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hillman CH, Pontifex MB, Castelli DM, et al. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics. 2014;134(4):E1063E1071. PubMed ID: 25266425 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Schaeffer DJ, Krafft CE, Schwarz NF, et al. An 8-month exercise intervention alters frontotemporal white matter integrity in overweight children. Psychophysiology. 2014;51(8):728733. PubMed ID: 24797659 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Krafft CE, Schaeffer DJ, Schwarz NF, et al. Improved frontoparietal white matter integrity in overweight children is associated with attendance at an after-school exercise program. Dev Neurosci. 2014;36(1):19. PubMed ID: 24457421 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kubesch S, Walk L, Spitzer M, et al. A 30-minute physical education program improves students’ executive attention. Mind Brain Educ. 2009;3(4):235242. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Tsai CL. The effectiveness of exercise intervention on inhibitory control in children with developmental coordination disorder: using a visuospatial attention paradigm as a model. Res Dev Disabil. 2009;30(6):12681280. PubMed ID: 19497707 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rueda MR, Fan J, McCandliss BD, et al. Development of attentional networks in childhood. Neuropsychologia. 2004;42(8):10291040. PubMed ID: 15093142 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Verburgh L, Konigs M, Scherder EJA, Oosterlaan J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br J Sports Med. 2014;48(12):973979. PubMed ID: 23467962 doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Owens S, Galloway R, Gutin B. The case for vigorous physical activity in youth. Am J Lifestyle Med. 2017;11(2):96115. PubMed ID: 30202319 doi:.

  • 14.

    Davis CL, Tomporowski PD, McDowell JE, et al. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized controlled trial. Health Psychol. 2011;30(1):9198. PubMed ID: 21299297 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    van der Niet AG, Smith J, Scherder EJA, Oosterlaan J, Hartman E, Visscher C. Associations between daily physical activity and executive functioning in primary school-aged children. J Sci Med Sport. 2015;18(6):673677. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Pesce C, Crova C, Marchetti R, et al. Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Ment Health Phys Act. 2013;6(3):172180. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):4456. PubMed ID: 10836557 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Fagot D, Chicherio C, Albinet CT, Andre N, Audiffren M. The impact of physical activity and sex differences on intraindividual variability in inhibitory performance in older adults. Aging Neuropsychol C. 2019;26(1):123. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Henderson SE, Sugden DA, Barnett AL. Movement Assessment Battery for Children-2 second edition [Movement ABC-2]. London, UK: The Psychological Corporation; 2007.

    • Search Google Scholar
    • Export Citation
  • 20.

    Yu J, Sit CHP, Capio CM, Burnett A, Ha ASC, Huang WYJ. Fundamental movement skills proficiency in children with developmental coordination disorder: does physical self-concept matter? Disabil Rehabil. 2016;38(1):4551. PubMed ID: 25698377 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Green D, Lingam R, Mattocks C, Riddoch C, Ness A, Emond A. The risk of reduced physical activity in children with probable developmental coordination disorder: a prospective longitudinal study. Res Dev Disabil. 2011;32(4):13321342. PubMed ID: 21334850 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Choi L, Liu ZW, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357364. PubMed ID: 20581716 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Basterfield L, Adamson AJ, Pearce MS, Reilly JJ. Stability of habitual physical activity and sedentary behavior monitoring by accelerometry in 6- to 8-year-olds. J Phys Act Health. 2011;8(4):543547. PubMed ID: 21597127 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Basterfield L, Adamson AJ, Frary JK, Parkinson KN, Pearce MS, Reilly JJ. Longitudinal study of physical activity and sedentary behavior in children. Pediatrics. 2011;127(1):e24e30. PubMed ID: 21173005 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Yu J, Sit CH, Burnett A, Capio CM, Ha AS, Huang WY. Effects of fundamental movement skills training on children with developmental coordination disorder. Adapt Phys Activ Q. 2016;33(2):134155. PubMed ID: 27078269 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sport Sci. 2008;26(14):15571565. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tsai CL, Yu YK, Chen YJ, Wu SK. Inhibitory response capacities of bilateral lower and upper extremities in children with developmental coordination disorder in endogenous and exogenous orienting modes. Brain Cogn. 2009;69(2):236244. PubMed ID: 18762360 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Raven J. The Raven’s Progressive Matrices: change and stability over culture and time. Cogn Psychol. 2000;41(1):148. PubMed ID: 10945921 doi:.

  • 30.

    Kliegl R, Wei P, Dambacher M, Yan M, Zhou XL. Experimental effects and individual differences in linear mixed models: estimating the relationship between spatial, object, and attraction effects in visual attention. Front Psychol. 2011;1:238. PubMed ID: 21833292

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Wang C, Chen P, Zhuang J. A national survey of physical activity and sedentary behavior of Chinese city children and youth using accelerometers. Res Q Exerc Sport. 2013;84(S2):S12S28. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Spittaels H, Van Cauwenberghe E, Verbestel V, et al. Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Phys Act. 2012;9(1):149. PubMed ID: 23249449 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wirt T, Schreiber A, Kesztyus D, Steinacker JM. Early life cognitive abilities and body weight: cross-sectional study of the association of inhibitory control, cognitive flexibility, and sustained attention with BMI percentiles in primary school children. J Obes. 2015;2015:534651. PubMed ID: 25874122 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Roebers CM, Rothlisberger M, Neuenschwander R, Cimeli P, Michel E, Jager K. The relation between cognitive and motor performance and their relevance for children’s transition to school: a latent variable approach. Hum Mov Sci. 2014;33:284297. PubMed ID: 24289983 doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hands B, Larkin D, Parker H, Straker LM, Perry M. The relationship among physical activity, motor competence and health-related fitness in 14-year-old adolescents. Scand J Med Sci Sports. 2009;19(5):655663. PubMed ID: 18694431 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Campbell DW, Eaton WO, McKeen NA. Motor activity level and behavioural control in young children. Int J Behav Dev. 2002;26(4):289296. doi:.

  • 37.

    Aadland KN, Moe VF, Aadland E, Anderssen SA, Resaland GK, Ommundsen Y. Relationships between physical activity, sedentary time, aerobic fitness, motor skills and executive function and academic performance in children. Ment Health Phys Act. 2017;12:1018. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    van der Fels IMJ, te Wierike SCM, Hartman E, Elferink-Gemser MT, Smith J, Visscher C. The relationship between motor skills and cognitive skills in 4–16 year old typically developing children: a systematic review. J Sci Med Sport. 2015;18(6):697703. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ardoy DN, Fernández-Rodríguez JM, Jiménez-Pavón D, Castillo R, Ruiz JR, Ortega FB. A physical education trial improves adolescents’ cognitive performance and academic achievement: the EDUFIT study. Scand J Med Sci Sports. 2014;24(1):e52e61. PubMed ID: 23826633 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Barha CK, Davis JC, Falck RS, Nagamatsu LS, Liu-Ambrose T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrin. 2017;46:7185. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6):S197S239. doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):111. doi:.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Rowlands AV, Pilgrim EL, Eston RG. Patterns of habitual activity across weekdays and weekend days in 9–11-year-old children. Prev Med. Apr 2008;46(4):317324. PubMed ID: 18162187 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Puhse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology. 2016;53(11):16111626. PubMed ID: 27556572 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Carlson SA, Fulton JE, Lee SM, et al. Physical education and academic achievement in elementary school: data from the early childhood longitudinal study. Am J Public Health. 2008;98(4):721727. PubMed ID: 18309127 doi:.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 217 217 217
Full Text Views 3 3 3
PDF Downloads 2 2 2