Adaptation and Retention of a Perceptual-Motor Task in Children: Effects of a Single Bout of Intense Endurance Exercise

in Journal of Sport and Exercise Psychology
View More View Less
  • 1 University of Barcelona
  • 2 California State University Northridge
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $85.00

1 year online subscription

USD  $114.00

Student 2 year online subscription

USD  $162.00

2 year online subscription

USD  $216.00

We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.

Blai Ferrer-Uris, Albert Busquets, and Rosa Angulo-Barroso are with the Institut Nacional d’Educació Física de Catalunya, University of Barcelona, Barcelona, Spain. Rosa Angulo-Barroso is also with the Department of Kinesiology, California State University Northridge, Northridge, CA.

Address author correspondence to Rosa Angulo-Barroso at rosa.angulobarroso@csun.edu.
  • Bekinschtein, P., Cammarota, M., Izquierdo, I., & Medina, J.H. (2008). BDNF and memory formation and storage. The Neuroscientist, 14(2), 147156. PubMed doi:10.1177/1073858407305850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benítez-Porres, J., López-Fernández, I., Raya, J.F., Álvarez Carnero, S., Alvero-Cruz, J.R., & Álvarez Carnero, E. (2016). Reliability and validity of the PAQ-C questionnaire to assess physical activity in children. Journal of School Health, 86(9), 677685. doi:10.1111/josh.12418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaddock, L., Erickson, K.I., Prakash, R.S., Kim, J.S., Voss, M.W., Vanpatter, M., … Kramer, A.F. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172183. PubMed doi:10.1016/j.brainres.2010.08.049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaddock, L., Erickson, K.I., Prakash, R.S., Vanpatter, M., Voss, M.W., Pontifex, M.B., … Kramer, A.F. (2010). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32(3), 249256. PubMed doi:10.1159/000316648

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, A.-G., Yan, J., Yin, H.-C., Pan, C.-Y., & Chang, Y.-K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15(6), 627636. doi:10.1016/j.psychsport.2014.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, R.O., Wilson, A.D., Snapp-Childs, W., Fath, A.J., & Bingham, G.P. (2014). The 50s cliff: Perceptuo-motor learning rates across the lifespan. PLoS ONE, 9(1), 85758. PubMed doi:10.1371/journal.pone.0085758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates. Retrieved from http://cataleg.ub.edu/record=b1105334~S1*spi

    • Search Google Scholar
    • Export Citation
  • Contreras-Vidal, J.L., Bo, J., Boudreau, J.P., & Clark, J.E. (2005). Development of visuomotor representations for hand movement in young children. Experimental Brain Research, 162(2), 155164. PubMed doi:10.1007/s00221-004-2123-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorfberger, S., Adi-Japha, E., & Karni, A. (2007). Reduced susceptibility to interference in the consolidation of motor memory before adolescence. PLoS ONE, 2(2), 16. doi:10.1371/journal.pone.0000240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyon, J., Penhune, V., & Ungerleider, L.G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252262. PubMed doi:10.1016/S0028-3932(02)00158-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrer-Uris, B., Busquets, A., Lopez-Alonso, V., Fernandez-del-Olmo, M., & Angulo-Barroso, R. (2017). Enhancing consolidation of a rotational visuomotor adaptation task through acute exercise. PLoS ONE, 12(4), 118. doi:10.1371/journal.pone.0175296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, É.W., Mullally, S., Foley, C., Warmington, S.A., O’Mara, S.M., Kelly, Á.M., … Kelly, A.M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior, 104(5), 934941. PubMed doi:10.1016/j.physbeh.2011.06.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, M.E., Davis, F.C., Vantieghem, M.R., Whalen, P.J., & Bucci, D.J. (2012). Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience, 215, 5968. doi:10.1016/j.neuroscience.2012.04.056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarus, T., Wughalter, E.H., & Gianutsos, J.G. (1997). Effects of contextual interference and conditions of movement task on acquisition, retention, and transfer of motor skills by women. Perceptual and Motor Skills, 84(1), 179193. PubMed doi:10.2466/pms.1997.84.1.179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krakauer, J.W. (2009). Motor learning and consolidation: The case of visuomotor rotation. Advances in Experimental Medicine and Biology, 629, 405421. doi:10.1007/978-0-387-77064-2_21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Krakauer, J.W., Ghez, C., & Ghilardi, M.F. (2005). Adaptation to visuomotor transformations: Consolidation, interference, and forgetting. The Journal of Neuroscience, 25(2), 473478. PubMed doi:10.1523/JNEUROSCI.4218-04.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labban, J., & Etnier, J. (2011). Effects of acute exercise on long-term memory. Research Quarterly for Exercise and Sport, 82(4), 712721. PubMed doi:10.1080/02701367.2011.10599808

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labelle, V., Bosquet, L., Mekary, S., & Bherer, L. (2013). Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain and Cognition, 81(1), 1017. PubMed doi:10.1016/j.bandc.2012.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Léger, L.A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences, 6(2), 93101. doi:10.1080/02640418808729800

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundbye-Jensen, J., Skriver, K., Nielsen, J.B., & Roig, M. (2017). Acute exercise improves motor memory consolidation in preadolescent children. Frontiers in Human Neuroscience, 11, 110. doi:10.3389/fnhum.2017.00182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mang, C.S., Snow, N.J., Campbell, K.L., Ross, C.J.D., & Boyd, L.A. (2014). A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. Journal of Applied Physiology, 117(11), 13251336. PubMed doi:10.1152/japplphysiol.00498.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMorris, T. (2016). Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: Lessons from animal studies. Physiology & Behavior, 165, 291299. doi:10.1016/j.physbeh.2016.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMorris, T., & Hale, B.J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3), 338351. PubMed doi:10.1016/j.bandc.2012.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostadan, F., Centeno, C., Daloze, J.-F., Frenn, M., Lundbye-Jensen, J., & Roig, M. (2016). Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory. Neurobiology of Learning and Memory, 136, 196203. PubMed doi:10.1016/j.nlm.2016.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pesce, C., Crova, C., Cereatti, L., Casella, R., & Bellucci, M. (2009). Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2(1), 1622. doi:10.1016/j.mhpa.2009.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roig, M., Nordbrandt, S., Geertsen, S.S., & Nielsen, J.B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience & Biobehavioral Reviews, 37(8), 16451666. PubMed doi:10.1016/j.neubiorev.2013.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roig, M., Skriver, K., Lundbye-Jensen, J., Kiens, B., & Nielsen, J.B. (2012). A single bout of exercise improves motor memory. PLoS ONE, 7(9), e44594. PubMed doi:10.1371/journal.pone.0044594

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salas, C.R., Minakata, K., & Kelemen, W.L. (2011). Walking before study enhances free recall but not judgement-of-learning magnitude. Journal of Cognitive Psychology, 23(4), 507513. doi:10.1080/20445911.2011.532207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal, S., Cotman, C., & Cahill, L. (2012). Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 32(4), 10111018. PubMed doi:10.3233/JAD-2012-121078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., & Holcomb, H.H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821825.

  • Sibley, B.A., & Etnier, J.L. (2003). The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science, 15(3), 243256. doi:10.1515/ijsl.2000.143.183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J.W., Kiens, B., & Nielsen, J.B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 4658. PubMed doi:10.1016/j.nlm.2014.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snow, N.J., Mang, C.S., Roig, M., McDonnell, M.N., Campbell, K.L., & Boyd, L.A. (2016). The effect of an acute bout of moderate-intensity aerobic exercise on motor learning of a continuous tracking task. PLoS ONE, 11(2), e0150039. PubMed doi:10.1371/journal.pone.0150039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Squire, L.R., & Kandel, E.R. (2000). Memory: From mind to molecules (1st ed.). New York, NY: Scientific American Library. Retrieved from http://cataleg.ub.edu/record=b1498919~S1*spi

    • Search Google Scholar
    • Export Citation
  • Statton, M.A., Encarnacion, M., Celnik, P., & Bastian, A.J. (2015). A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS ONE, 10(10), e0141393. doi:10.1371/journal.pone.0141393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St-Louis-Deschênes, M., & Ellemberg, D. (2011). L’exercice physique aigu et la performance cognitive chez l’enfant et l’adolescent. Science & Sports, 28(2), 5764. doi:10.1016/j.scispo.2011.10.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taubert, M., Villringer, A., & Lehmann, N. (2015). Endurance exercise as an “endogenous” neuro-enhancement strategy to facilitate motor learning. Frontiers in Human Neuroscience, 9, 116. doi:10.3389/fnhum.2015.00692

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D., McCullick, B., Pendleton, D.M., & Pesce, C. (2015). Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4(1), 4755. doi:10.1016/j.jshs.2014.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trempe, M., & Proteau, L. (2010). Distinct consolidation outcomes in a visuomotor adaptation task: Off-line leaning and persistent after-effect. Brain and Cognition, 73(2), 135145. doi:10.1016/j.bandc.2010.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, B., Breitenstein, C., Mooren, F.C., Voelker, K., Fobker, M., Lechtermann, A., … Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597609. PubMed doi:10.1016/j.nlm.2006.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 385 286 26
Full Text Views 41 36 8
PDF Downloads 20 18 4