The Effect of Acute Exercise on Encoding and Consolidation of Long-Term Memory

in Journal of Sport and Exercise Psychology
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $84.00

1 year subscription

USD  $111.00

Student 2 year subscription

USD  $159.00

2 year subscription

USD  $208.00

Evidence supports that acute exercise benefits long-term memory. However, it is unclear whether these effects are due to benefits to encoding or consolidation. The purpose of this study was to more effectively isolate encoding and consolidation to advance our understanding of the specific nature of the effects of exercise on long-term memory. Using a within-subject design, participants completed a control session (no exercise), an encoding and consolidation condition (exercise prior to exposure to the memory task, E + C), and a consolidation condition (exercise following exposure). The exercise was 30 min of moderate-intensity cycling. Memory was assessed using the Rey Auditory Verbal Learning Test with recall assessed at 60 min and recall and recognition assessed at 24 hr. Results showed that the E + C condition had significantly better recall at 60 min and 24 hr than the no-exercise condition. This provides additional evidence that acute exercise benefits encoding more than consolidation.

Labban is with the School of Health and Human Sciences, and Etnier, the Dept. of Kinesiology, University of North Carolina Greensboro, Greensboro, NC.

Etnier (jletnier@uncg.edu) is corresponding author.
  • Ang, E.T., & Gomez-Pinilla, F. (2007). Potential therapeutic effects of exercise to the brain. Current Medicinal Chemisty, 14(24), 2564–2571. PubMed ID: 17979709

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baddeley, A.D. (1999). Essentials of human memory. Hove, UK: Psychology Press.

  • Bekinschtein, P., Cammarota, M., Izquierdo, I., & Medina, J.H. (2008). BDNF and memory formation and storage. Neuroscientist, 14(2), 147–156. PubMed ID: 17911219 doi:10.1177/1073858407305850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benson, V., & Marano, M.A. (1998). Current estimates from the National Health Interview Survey, 1995. Vital Health Statistics, 199, 1–428. PubMed ID: 9914773

    • Search Google Scholar
    • Export Citation
  • Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.

  • Brisswalter, J., Collardeau, M., & Rene, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555–566. PubMed ID: 12096929

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.K., & Etnier, J.L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport & Exercise Psychology, 31(5), 640–656. PubMed ID: 20016113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.K., Labban, J.D., Gapin, J.I., & Etnier, J.L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101. PubMed ID: 22480735 doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M.J., Fan, X., & Moe, S.T. (2002). Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: A meta-analysis. Journal of Sports Sciences, 20(11), 873–899. PubMed ID: 12430990

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, K., & Tomporowski, P.D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333–344. PubMed ID: 18074301 doi:10.1080/02640410701591417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotman, C.W., & Berchtold, N.C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neuroscience, 25(6), 295–301. PubMed ID: 12086747

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotman, C.W., & Berchtold, N.C. (2007). Physical activity and the maintenance of cognition: Learning from animal models. Alzheimers and Dementia, 3(Suppl. 2), 30–37. doi:10.1016/j.jalz.2007.01.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emery, C.F., Honn, V.J., Frid, D.J., Lebowitz, K.R., & Diaz, P.T. (2001). Acute effects of exercise on cognition in patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 164(9), 1624–1627. PubMed ID: 11719300 doi:10.1164/ajrccm.164.9.2104137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etnier, J.L., Salazar, W., Landers, D.M., Petruzzello, S.J., Han, M., & Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: A meta-analysis. Journal of Sport & Exercise Psychology, 19, 249–277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etnier, J.L., Wideman, L., Labban, J.D., Piepmeier, A.T., Pendleton, D.M., Dvorak, K.K., & Becofsky, K. (2016). The effects of acute exercise on memory and brain-derived neurotrophic factor (BDNF). Journal of Sport & Exercise Psychology, 38(4), 331–340. PubMed ID: 27385735 doi:10.1123/jsep.2015-0335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frith, E., Sng, E., & Loprinzi, P.D. (2017). Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. European Journal of Neuroscience, 46(10), 2557–2564. PubMed ID: 28922507 doi:10.1111/ejn.13719

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kashihara, K., Maruyama, T., Murota, M., & Nakahara, Y. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28(4), 155–164. PubMed ID: 19652447

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubesch, S., Bretschneider, V., Freudenmann, R., Weidenhammer, N., Lehmann, M., Spitzer, M., & Gron, G. (2003). Aerobic endurance exercise improves executive functions in depressed patients. Journal of Clinical Psychiatry, 64(9), 1005–1012. PubMed ID: 14628975

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labban, J.D., & Etnier, J.L. (2011). Effects of acute exercise on long-term memory. Research Quarterly for Exercise and Sport, 82(4), 712–721. PubMed ID: 22276413 doi:10.1080/02701367.2011.10599808

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(863), 1–12. doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24. PubMed ID: 20381468 doi:10.1016/j.brainres.2010.03.091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lezak, M.D., Howieson, D.B., & Loring, D.W. (2004). Neuropsychological assessment. New York, NY: Oxford University Press.

  • Lipsky, R.H., & Marini, A.M. (2007). Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Annals of the New York Academy of Science, 1122, 130–143. doi:10.1196/annals.1403.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi, P.D., Frith, E., Edwards, M.K., Sng, E., & Ashpole, N. (2018). The effects of exercise on memory function among young to middle-aged adults: Systematic review and recommendations for future research. American Journal of Health Promotion, 32(3), 691–704. PubMed ID: 29108442 doi:10.1177/0890117117737409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMorris, T., & Graydon, J. (2000). The effect of incremental exercise on cognitive performance. International Journal of Sport Psychology, 31(1), 66–81.

    • Search Google Scholar
    • Export Citation
  • Netz, Y., Argov, E., & Inbar, O. (2009). Fitness’s moderation of the facilitative effect of acute exercise on cognitive flexibility in older women. Journal of Aging & Physical Activity, 17(2), 154–166. PubMed ID: 19451665

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pesce, C., Cereatti, L., Casella, R., Baldari, C., & Capranica, L. (2007). Preservation of visual attention in older expert orienteers at rest and under physical effort. Journal of Sport & Exercise Psychology, 29(1), 78–99. PubMed ID: 17556777

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, D., & Keeling, D. (2005). Effects of moderate exercise and circadian rhythms on human memory. Journal of Sport & Exercise Psychology, 27, 117–125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roig, M., Nordbrandt, S., Geertsen, S.S., & Nielsen, J.B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience & Biobehavioral Reviews, 37(8), 1645–1666. PubMed ID: 23806438 doi:10.1016/j.neubiorev.2013.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salas, C.R., Minakata, K., & Kelemen, W.L. (2011). Walking before study enhances free recall but not judgment of learning magnitude. Journal of Cognitive Psychology, 23(4), 507–513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D. (2003a). Cognitive and behavioral response to acute exercise in youths: A review. Pediatric Exercise Science, 15, 348–359.

  • Tomporowski, P.D. (2003b). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324. PubMed ID: 12595152

  • Tomporowski, P.D., & Ellis, N.R. (1986). Effects of exercise on cognitive processes: A review. Psychological Bulletin, 99(3), 338–346. doi:10.1037/0033-2909.99.3.338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D., & Ganio, M.S. (2006). Short-term effects of aerobic exercise on executive processing, memory, and emotional reactivity. International Journal of Sport & Exercise Psychology, 4, 57–72. doi:10.1080/1612197X.2006.9671784

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaynman, S., & Gomez-Pinilla, F. (2005). License to run: Exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabilitation and Neural Repair, 19(4), 283–295. PubMed ID: 16263961 doi:10.1177/1545968305280753

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter, B., Breitenstein, C., Mooren, F.C., Voelker, K., Fobker, M., Lechtermann, A., … Knecht, S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597–609. PubMed ID: 17185007 doi:10.1016/j.nlm.2006.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 211 211 53
Full Text Views 81 81 21
PDF Downloads 41 41 11