Effects of Acute Aerobic and Resistance Exercise on Cognitive Function and Salivary Cortisol Responses

in Journal of Sport and Exercise Psychology
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $84.00

1 year subscription

USD $111.00

Student 2 year subscription

USD $159.00

2 year subscription

USD $208.00

This study aimed to determine the comparative effectiveness of aerobic vs. resistance exercise on cognitive function. In addition, salivary cortisol responses, as an indicator of arousal-related neuroendocrine responses, were assessed as a potential mechanism underlying the effects of these 2 modes of acute exercise on cognition. Forty-two young adults were recruited and performed the Stroop task after 1 session of aerobic exercise, resistance exercise, and a sedentary condition performed on separate days. Saliva samples were collected at baseline and immediately and 30 min after treatment conditions. Acute exercise, regardless of exercise modality, improved multiple aspects of cognitive function as reflected by the Stroop task. Cortisol responses were higher after both modes of acute exercise compared with the sedentary condition and were higher at baseline and 30 min afterward compared with immediately after treatment conditions. These findings suggest that acute exercise of moderate intensity facilitates cognitive function, and, although salivary cortisol is influenced by acute exercise, levels were not related to improvements in cognition.

Wang and Chang are with the Dept. of Physical Education, and Chang also the Inst. for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Republic of China (Taiwan). Alderman is with the Dept. of Kinesiology and Health, Rutgers University, New Brunswick, NJ. Wu is with the Graduate Inst. of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Republic of China (Taiwan). Chi is with School of Physical Education, Minnan Normal University, Fujian Province, China. Chen is with the Post-Baccalaureate Program in Nursing and School of Nursing , College of Nursing, Taipei Medical University, Taipei, Republic of China (Taiwan).

Chang (yukaichangnew@gmail.com) and Alderman (alderman@kines.rutgers.edu) are corresponding authors.
Journal of Sport and Exercise Psychology
Article Sections
References
  • AlvarezJ.A. & EmoryE. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review 16(1) 1742. PubMed ID: 16794878 doi:10.1007/s11065-006-9002-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AlvesC.R.GualanoB.TakaoP.P.AvakianP.FernandesR.M.MorineD. & TakitoM.Y. (2012). Effects of acute physical exercise on executive functions: A comparison between aerobic and strength exercise. Journal of Sport and Exercise Psychology 34(4) 539549. PubMed ID: 22889693 doi:10.1123/jsep.34.4.539

    • Crossref
    • Search Google Scholar
    • Export Citation
  • American College of Sports Medicine. (2017). ACSM’s guidelines for exercise testing and prescription (10th ed.). New York, NY: Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • ArnarsonA.Gudny GeirsdottirO.RamelA.JonssonP.V. & ThorsdottirI. (2015). Insulin-like growth factor-1 and resistance exercise in community dwelling old adults. The Journal of Nutrition Health and Aging 19(8) 856860. PubMed ID: 26412290 doi:10.1007/s12603-015-0547-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaechleT.R. & EarleR.W. (2008). Essentials of strength training and conditioning (3rd ed.). Champaign, IL: Human kinetics.

  • BarellaL.A.EtnierJ.L. & ChangY.K. (2010). The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults. Journal of Aging and Physical Activity 18(1) 8798. PubMed ID: 20181996 doi:10.1123/japa.18.1.87

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeckA.T.SteerR.A. & BrownG.K. (1996). Beck depression inventory manual (2nd ed.). San Antonio, TX: The Psychological Corporation.

    • Search Google Scholar
    • Export Citation
  • BorgG.A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise 14 377381. PubMed ID: 7154893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BruléG. & MorganR. (2018). Working with stress: Can we turn distress into eustress? Journal of Neuropsychology & Stress Management 3 13.

    • Search Google Scholar
    • Export Citation
  • BrushC.J.OlsonR.L.EhmannP.J.OsovskyS. & AldermanB.L. (2016). Dose-response and time course effects of acute resistance exercise on executive function. Journal of Sport and Exercise Psychology 38(4) 396408. PubMed ID: 27385719 doi:10.1123/jsep.2016-0027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BuddeH.Voelcker-RehageC.Pietrassyk-KendziorraS.MachadoS.RibeiroP. & ArafatA.M. (2010). Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting. Psychoneuroendocrinology 35(3) 382391. PubMed ID: 19716238 doi:10.1016/j.psyneuen.2009.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangE.C.H.ChuC.H.KarageorghisC.I.WangC.C.TsaiJ.H.C.WangY.S. & ChangY.K. (2017). Relationship between mode of sport training and general cognitive performance. Journal of Sport and Health Science 6(1) 8995. PubMed ID: 30356524 doi:10.1016/j.jshs.2015.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangY.K.AldermanB.L.ChuC.H.WangC.C.SongT.F. & ChenF.T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology 54(2) 289300. PubMed ID: 27861961 doi:10.1111/psyp.12784

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangY.K.ChuC.H.WangC.C.WangY.C.SongT.F.TsaiC.L. & EtnierJ.L. (2015). Dose-response relation between exercise duration and cognition. Medicine and Science in Sports and Exercise 47(1) 159165. PubMed ID: 24870572 doi:10.1249/MSS.0000000000000383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangY.K. & EtnierJ.L. (2009a). Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport and Exercise 10(1) 1924. doi:10.1016/j.psychsport.2008.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangY.K. & EtnierJ.L. (2009b). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology 31(5) 640656. PubMed ID: 20016113 doi:10.1123/jsep.31.5.640

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangY.K.LabbanJ.D.GapinJ.I. & EtnierJ.L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research 1453 87101. PubMed ID: 22480735 doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChangY.K.TsaiC.L.HuangC.C.WangC.C. & ChuI.H. (2014). Effects of acute resistance exercise on cognition in late middle-aged adults: General or specific cognitive improvement? Journal of Science and Medicine in Sport 17(1) 5155. PubMed ID: 23491140 doi:10.1016/j.jsams.2013.02.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChuC.H.AldermanB.L.WeiG.X. & ChangY.K. (2015). Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. Journal of Sport and Health Science 4(1) 7381. doi:10.1016/j.jshs.2014.12.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EtnierJ.L. & ChangY.K. (2009). The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sport and Exercise Psychology 31(4) 469483. PubMed ID: 19842543 doi:10.1123/jsep.31.4.469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoldingL.A. (1989). YMCA Fitness testing and assessment manual. Champaign, IL: Human Kinetics.

  • GregoryS.M.SpieringB.A.AlemanyJ.A.TuckowA.P.RarickK.R.StaabJ.S.NindlB.C. (2013). Exercise-induced insulin-like growth factor I system concentrations after training in women. Medicine and Science in Sports and Exercise 45(3) 420428. PubMed ID: 23034644 doi:10.1249/MSS.0b013e3182750bd4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GriffinÉ.W.MullallyS.FoleyC.WarmingtonS.A.O’MaraS.M. & KellyÁ.M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology and Behavior 104(5) 934941. PubMed ID: 21722657 doi:10.1016/j.physbeh.2011.06.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HillmanC.H.PontifexM.B.RaineL.B.CastelliD.M.HallE.E. & KramerA.F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159(3) 10441054. PubMed ID: 19356688 doi:10.1016/j.neuroscience.2009.01.057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HillmanC.H.SnookE.M. & JeromeG.J. (2003). Acute cardiovascular exercise and executive control function. International Journal of Psychophysiology 48(3) 307314. PubMed ID: 12798990 doi:10.1016/S0167-8760(03)00080-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HuangT.LarsenK.T.Ried-LarsenM.MollerN.C. & AndersenL.B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian Journal of Medicine and Science in Sports 24(1) 110. PubMed ID: 23600729 doi:10.1111/sms.12069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • InderW.J.DimeskiG. & RussellA. (2012). Measurement of salivary cortisol in 2012—Laboratory techniques and clinical indications. Clinical Endocrinology 77(5) 645651. PubMed ID: 22812714 doi:10.1111/j.1365-2265.2012.04508.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JagerK.SchmidtM.ConzelmannA. & RoebersC.M. (2014). Cognitive and physiological effects of an acute physical activity intervention in elementary school children. Frontiers in Psychology 51473. PubMed ID: 25566148 doi:10.3389/fpsyg.2014.01473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KamijoK.NishihiraY.HigashiuraT. & KuroiwaK. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology 65(2) 114121. PubMed ID: 17482699 doi:10.1016/j.ijpsycho.2007.04.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KoutsandréouF.NiemannC.WegnerM. & BuddeH. (2016). Acute exercise and cognition in children and adolescents: The roles of testosterone and cortisol. In T. McMorris (Ed.) Exercise–cognition interaction: Neuroscience perspectives (pp. 283294). San Diego, CA: Elsevier Academic Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KristensonM.GarvinP. & LundbergU. (2012). The role of saliva cortisol measurement in health and disease.

  • LambourneK. & TomporowskiP. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research 13411224. PubMed ID: 20381468 doi:10.1016/j.brainres.2010.03.091

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiouY.M.JwoJ.C.YaoK.P.ChiangL.C. & HuangL.H. (2008). Selection of appropriate Chinese terms to represent intensity and types of physical activity terms for use in the Taiwan version of IPAQ. Journal of Nursing Research 16(4) 252263. PubMed ID: 19061172 doi:10.1097/01.JNR.0000387313.20386.0a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiuY.F.ChenH.I.WuC.L.KuoY.M.YuL.HuangA.M.JenC.J. (2009). Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: Roles of amygdalar brain-derived neurotrophic factor and synaptotagmin I. The Journal of Physiology 587(13) 32213231. PubMed ID: 19451201 doi:10.1113/jphysiol.2009.173088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LovalloW.R.FaragN.H.VincentA.S.ThomasT.L. & WilsonM.F. (2006). Cortisol responses to mental stress, exercise, and meals following caffeine intake in men and women. Pharmacology Biochemistry and Behavior 83(3) 441447. PubMed ID: 16631247 doi:10.1016/j.pbb.2006.03.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacLeodC.M. (1991). Half a century of research on the stroop effect: An integrative review. Psychological Bulletin 109(2) 163203. PubMed ID: 2034749 doi:10.1037/0033-2909.109.2.163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMorrisT. & HaleB.J. (2015). Is there an acute exercise-induced physiological/biochemical threshold which triggers increased speed of cognitive functioning? A meta-analytic investigation. Journal of Sport and Health Science 4(1) 413. doi:10.1016/j.jshs.2014.08.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MiyakeA.FriedmanN.P.EmersonM.J.WitzkiA.H.HowerterA. & WagerT.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology 41(1) 49100. PubMed ID: 10945922 doi:10.1006/cogp.1999.0734

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NiemannC.WegnerM.Voelcker-RehageC.HolzwegM.ArafatA.M. & BuddeH. (2013). Influence of acute and chronic physical activity on cognitive performance and saliva testosterone in preadolescent school children. Mental Health and Physical Activity 6(3) 197204. doi:10.1016/j.mhpa.2013.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PesceC. (2009). An integrated approach to the effect of acute and chronic exercise on cognition: The linked role of individual and task constraints. In T. McMorrisP.D. Tomporowski & M. Audiffren (Eds.) Exercise and cognitive function (pp. 213225). Chichester, UK: John Wiley & Sons.

    • Search Google Scholar
    • Export Citation
  • PolichJ. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology 118(10) 21282148. PubMed ID: 17573239 doi:10.1016/j.clinph.2007.04.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PontifexM.HillmanC.FernhallB.ThompsonK. & ValentiniT. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine and Science in Sports and Exercise 41(4) 927934. doi:10.1249/MSS.0b013e3181907d69

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PontifexM.B.McGowanA.L.ChandlerM.C.GwizdalaK.L.ParksA.C.FennK. & KamijoK. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise 40 122. doi:10.1016/j.psychsport.2018.08.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RobinsonJ. (2013). Edinburgh handedness inventory. In F.R. Volkmar (Ed.) Encyclopedia of autism spectrum disorders (pp. 10511054). New York, NY: Springer.

    • Search Google Scholar
    • Export Citation
  • Rojas VegaS.KnickerA.HollmannW.BlochW. & StruderH.K. (2010). Effect of resistance exercise on serum levels of growth factors in humans. Hormone and Metabolic Research 42(13) 982986. PubMed ID: 21053157 doi:10.1055/s-0030-1267950

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SalthouseT.A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging 30(4) 507514. PubMed ID: 19231028 doi:10.1016/j.neurobiolaging.2008.09.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SheddenJ.M.MillikenB.WatterS. & MonteiroS. (2013). Event-related potentials as brain correlates of item specific proportion congruent effects. Consciousness and Cognition 22(4) 14421455. PubMed ID: 24177235 doi:10.1016/j.concog.2013.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StroopJ.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology 18(6) 643662. doi:10.1037/h0054651

  • StrothS.KubeschS.DieterleK.RuchsowM.HeimR. & KieferM. (2009). Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Research 1269114124. PubMed ID: 19285042 doi:10.1016/j.brainres.2009.02.073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TamN.D. (2013). Improvement of processing speed in executive function immediately following an increase in cardiovascular activity. Cardiovascular Psychiatry and Neurology 2013 212767. PubMed ID: 24187613 doi:10.1155/2013/212767

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TsaiC.L.WangC.H.PanC.Y.ChenF.C.HuangT.H. & ChouF.Y. (2014). Executive function and endocrinological responses to acute resistance exercise. Frontiers in Behavioral Neuroscience 8 262. PubMed ID: 25136300

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanBruggenM.D.HackneyA.C.McMurrayR.G. & OndrakK.S. (2011). The relationship between serum and salivary cortisol levels in response to different intensities of exercise. International Journal of Sports Physiology and Performance 6(3) 396407. PubMed ID: 21911864 doi:10.1123/ijspp.6.3.396

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WangC.C.HuangC.C.ShihC.H.ChuC.H. & ChangY.K. (2016). Effect of acute exercise on executive function: An event-related potential and brain-derived neurotropic factor study. Physical Education Journal 49 4760.

    • Search Google Scholar
    • Export Citation
  • WeinbergL.HasniA.ShinoharaM. & DuarteA. (2014). A single bout of resistance exercise can enhance episodic memory performance. Acta Psychologica 153 1319. PubMed ID: 25262058 doi:10.1016/j.actpsy.2014.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YanagisawaH.DanI.TsuzukiD.KatoM.OkamotoM.KyutokuY. & SoyaH. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 50(4) 17021710. PubMed ID: 20006719 doi:10.1016/j.neuroimage.2009.12.023

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 456 456 82
Full Text Views 72 72 27
PDF Downloads 33 33 11
Altmetric Badge
PubMed
Google Scholar
Cited By