Performance on an Associative Memory Test Decreases 8 hr After Cardiovascular Exercise

in Journal of Sport and Exercise Psychology

Click name to view affiliation

Arth R.R. Pahwa University of Alberta

Search for other papers by Arth R.R. Pahwa in
Current site
Google Scholar
PubMed
Close
*
,
Dylan J. Miller University of Alberta

Search for other papers by Dylan J. Miller in
Current site
Google Scholar
PubMed
Close
*
,
Jeremy B. Caplan University of Alberta

Search for other papers by Jeremy B. Caplan in
Current site
Google Scholar
PubMed
Close
*
, and
David F. Collins University of Alberta

Search for other papers by David F. Collins in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study was designed to assess the effects of acute exercise on performance of a paired associate learning (PAL) test, an operationalization of hippocampal-dependent associative memory. Participants performed a PAL test and then ran on a treadmill (exercise group, n = 52) or solved Sudoku puzzles (control group, n = 54). Participants returned 2, 5, or 8 hr later to perform a second, different, PAL test. PAL scores for the control group did not change over time. Similarly, scores on tests taken 2 and 5 hr after exercise were not different from baseline or control data. Scores on tests taken 8 hr after exercise, however, fell significantly below baseline (by 8.6%) and control (by 9.8%) scores. These data demonstrate that acute exercise can negatively affect the encoding and retrieval of new information even hours after the exercise bout, which should be a consideration when designing exercise programs to enhance, and not hinder, learning.

Pahwa is with the Faculty of Medicine and Dentistry; Miller and Collins, the Faculty of Kinesiology, Sport, and Recreation; and Caplan, the Dept. of Psychology, Neuroscience and Mental Health Inst., University of Alberta, Edmonton, AB, Canada.

Pahwa (apahwa@ualberta.ca) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 445 KB)
    • Supplementary Table 2 (PDF 118 KB)
  • Collapse
  • Expand
  • Amireault , S. , & Godin , G. (2015). The Godin-Shephard leisure-time physical activity questionnaire: Validity evidence supporting its use for classifying healthy adults into active and insufficiently active categories. Perceptual and Motor Skills, 120(2), 604622. PubMed ID: 25799030 doi:10.2466/03.27.PMS.120v19x7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson , R.C. , & Shiffrin , R.M. (1971). The control of short-term memory. Scientific American, 225(2), 8291. PubMed ID: 5089457 doi:10.1038/scientificamerican0871-82

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basso , J.C. , Shang , A. , Elman , M. , Karmouta , R. , & Suzuki , W.A. (2010). Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults. Journal of the International Neuropsychological Society, 21(10), 791801. doi:10.1017/S135561771500106X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blough , J. , & Loprinzi , P.D. (2019). Experimental manipulation of psychological control scenarios: Implications for exercise and memory research. Psych, 1(1), 279289. doi:10.3390/psych1010019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosch , B.M. , Bringard , A. , Logrieco , M.G. , Lauer , E. , Imobersteg , N.M. , Ferretti , G. , … Igloi , K. (2019). Acute physical exercise improves memory consolidation in humans via BDNF and endocannabinoid signaling. bioRxiv, 211227. doi:10.1101/211227

    • Search Google Scholar
    • Export Citation
  • Caplan , J.B. , & Madan , C.R. (2016). Word imageability enhances association-memory by increasing hippocampal engagement. Journal of Cognitive Neuroscience, 28(10), 15221538. PubMed ID: 27315268 doi:10.1162/jocn_a_00992

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellano , V. , & White , L.J. (2008). Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. Journal of the Neurological Sciences, 269(1), 8591. doi:10.1016/j.jns.2007.12.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2015). Perceived exertion (Borg Rating of Perceived Exertion Scale) physical activity | CDC. Retrieved from https://www.cdc.gov/physicalactivity/basics/measuring/exertion.htm

    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2016 ). Target heart rate and estimated maximum heart rate physical activity | CDC. Retrieved from https://www.cdc.gov/physicalactivity/basics/measuring/heartrate.htm

    • Search Google Scholar
    • Export Citation
  • Chang , Y.K. , Labban , J.D. , Gapin , J.I. , & Etnier , J.L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87101. PubMed ID: 22480735 doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles , K. , & Tomporowski , P.D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333344. PubMed ID: 18074301 doi:10.1080/02640410701591417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotman , C.W. , & Berchtold , N.C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295301. PubMed ID: 12086747 doi:10.1016/S0166-2236(02)02143-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covassin , T. , Weiss , L. , Powell , J. , & Womack , C. (2007). Effects of a maximal exercise test on neurocognitive function. British Journal of Sports Medicine, 41(6), 370374. doi:10.1136/bjsm.2006.032334

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crush , E.A. , & Loprinzi , P.D. (2017). Dose-response effects of exercise duration and recovery on cognitive functioning. Perceptual and Motor Skills, 124(6), 11641193. PubMed ID: 28829227 doi:10.1177/0031512517726920

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eich , T.S. , & Metcalfe , J. (2009). Effects of the stress of marathon running on implicit and explicit memory. Psychonomic Bulletin & Review, 16(3), 475479. doi:10.3758/PBR.16.3.475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichenbaum , H. (2009). The cognitive neuroscience of memory: An introduction. Oxford Scholarship Online. doi:10.1093/acprof:oso/9780195141740.001.0001

    • Search Google Scholar
    • Export Citation
  • Ferris , L.T. , Williams , J.S. , & Shen , C.L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine & Science in Sports & Exercise, 39(4), 728734. PubMed ID: 17414812 doi:10.1249/mss.0b013e31802f04c7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godin , G. (2011). The Godin-Shephard leisure-time physical activity questionnaire. The Health and Fitness Journal of Canada, 4(1), 1822.

    • Search Google Scholar
    • Export Citation
  • Godin , G. , & Shephard , R.J. (1985). A simple method to assess exercise behavior in the community. Canadian Journal of Applied Sport Sciences, 10(3), 141146.

    • Search Google Scholar
    • Export Citation
  • Jacobs , J.D. , Ainsworth , B.E. , Hartman , T.J. , & Leon , A.S. (1993). A simultaneous evaluation of 10 commonly used physical activity questionnaires. Medicine & Science in Sports & Exercise, 25(1), 8191. PubMed ID: 8423759 doi:10.1249/00005768-199301000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaepen , K. , Goekint , M. , Heyman , E.M. , & Meeusen , R. (2010). Neuroplasticity: Exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Medicine, 40(9), 765801. PubMed ID: 20726622 doi:10.2165/11534530-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koppenaal , L. , & Glanzer , M. (1990). An examination of the continuous distractor task and the “long-term recency effect”. Memory and Cognition, 18(2), 183195. PubMed ID: 2319960 doi:10.3758/BF03197094

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labban , J.D. , & Etnier , J.L. (2011). Effects of acute exercise on long-term memory. Research Quarterly for Exercise and Sport, 82(4), 712721. PubMed ID: 22276413 doi:10.1080/02701367.2011.10599808

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi , P.D. (2018). Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory. Health Promotion Perspectives, 8(4), 255262. PubMed ID: 30479978 doi:10.15171/hpp.2018.36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi , P.D. (2019a). The effects of exercise on long-term potentiation: A candidate mechanism of the exercise-memory relationship. OBM Neurobiology, 3(2), 113. doi:10.21926/obm.neurobiol.1902026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi , P.D. (2019b). Does brain-derived neurotrophic factor mediate the effects of exercise on memory? Physician and Sportsmedicine, 47(4), 395405. doi:10.1080/00913847.2019.1610255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui , T. , Ishikawa , T. , Ito , H. , Okamoto , M. , Inoue , K. , Lee , M. , … Soya , H. (2012). Brain glycogen supercompensation following exhaustive exercise. The Journal of Physiology, 590(3), 607616. PubMed ID: 22063629 doi:10.1113/jphysiol.2011.217919

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayes , A. , Montaldi , D. , & Migo , E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126135. PubMed ID: 17270487 doi:10.1016/j.tics.2006.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNerney , M.W. , & Radvansky , G.A. (2015). Mind racing: The influence of exercise on long-term memory consolidation. Memory, 23(8), 11401151. PubMed ID: 25312348 doi:10.1080/09658211.2014.962545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oz , G. , Kumar , A. , Rao , J.P. , Kodl , C.T. , Chow , L. , Eberly , L.E. , & Seaquist , E.R. (2009). Human brain glycogen metabolism during and after hypoglycemia. Diabetes, 58(9), 19781985. PubMed ID: 19502412 doi:10.2337/db09-0226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paivio , A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76(3), 241263. doi:10.1037/h0027272

  • Poo , M.M. , Pignatelli , M. , Ryan , T.J. , Tonegawa , S. , Bonhoeffer , T. , Martin , K.C. , … Mullins , C. (2016). What is memory? The present state of the engram. BMC Biology, 14(1), 40. doi:10.1186/s12915-016-0261-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter , D. , & Keeling , D. (2005). Effects of moderate exercise and circadian rhythms on human memory. Journal of Sport and Exercise Psychology, 27(2005), 117125. doi:10.1123/jsep.27.1.117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roig , M. , Nordbrandt , S. , Geertsen , S.S. , & Nielsen , J.B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8), 16451666. doi:10.1016/j.neubiorev.2013.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roig , M. , Thomas , R. , Mang , C.S. , Snow , N.J. , Ostadan , F. , Boyd , L.A. , & Lundbye-Jensen , J. (2016). Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences Reviews, 44(2), 8188. PubMed ID: 26872291 doi:10.1249/JES.0000000000000078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal , S.K. , Cotman , C.W. , & Cahill , L.F. (2012). Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. Journal of Alzheimers Disease, 32(4), 10111018. PubMed ID: 32061032 doi:10.3233/JAD-2012-121078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siscovick , D.S. , Laporte , R.E. , & Newman , J.M. (1985). The disease-specific benefits and risks of physical activity and exercise. Public Health Reports, 100(2), 180188. PubMed ID: 3920716

    • Search Google Scholar
    • Export Citation
  • Skriver , K. , Roig , M. , Lundbye-Jensen , J. , Pingel , J. , Helge , J.W. , Kiens , B. , & Nielsen , J.B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 4658. PubMed ID: 25128877 doi:10.1016/j.nlm.2014.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sothern , M.S. , Loftin , M. , Suskind , R.M. , Udall , J.N. , & Blecker , U. (1999). The health benefits of physical activity in children and adolescents: Implications for chronic disease prevention. European Journal of Pediatrics, 158(4), 271274. PubMed ID: 10206121 doi:10.1007/s004310051070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang , S.W. , Chu , E. , Hui , T. , Helmeste , D. , & Law , C. (2008). Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neuroscience Letters, 431(1), 6265. PubMed ID: 18068900 doi:10.1016/j.neulet.2007.11.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski , P.D. , & Ellis , N.R. (1986). Effects of exercise on cognitive processes: A review. Psychological Bulletin, 99(3), 338346. doi:10.1037/0033-2909.99.3.338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski , P.D. , Ellis , N.R. , & Stephens , R. (1987). The immediate effects of strenuous exercise on free-recall memory. Ergonomics, 30(1), 121129. PubMed ID: 3830124 doi:10.1080/00140138708969682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai , S.F. , Chen , P.C. , Calkins , M.J. , Wu , S.Y. , & Kuo , Y.M. (2016). Exercise counteracts aging-related memory impairment: A potential role for the astrocytic metabolic shuttle. Frontiers in Aging Neuroscience, 8, 57. PubMed ID: 27047373 doi:10.3389/fnagi.2016.00057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dongen , E.V. , Kersten , I.H.P. , Wagner , I.C. , Morris , R.G.M. , & Fernández , G. (2016). Physical exercise performed four hours after learning improves memory retention and increases hippocampal pattern similarity during retrieval. Current Biology, 26(13), 17221727. PubMed ID: 27321998 doi:10.1016/j.cub.2016.04.071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warburton , D.E. , Nicol , C.W. , & Bredin , S.S. (2006). Health benefits of physical activity: The evidence. CMAJ, 174(6), 801809. PubMed ID: 16534088 doi:10.1503/cmaj.051351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson , M. (1988). MRC psycholinguistic database: Machine-usable dictionary, version 2.00. Behavior Research Methods, Instruments, and Computers, 20(1), 610. doi:10.3758/BF03202594

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter , B. , Breitenstein , C. , Mooren , F.C. , Voelker , K. , Fobker , M. , Lechtermann , A. , … Knecht , S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597609. PubMed ID: 17185007 doi:10.1016/j.nlm.2006.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarrow , J.F. , White , L.J. , McCoy , S.C. , & Borst , S.E. (2010). Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neuroscience Letters, 479(2), 161165. PubMed ID: 20553806 doi:10.1016/j.neulet.2010.05.058

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3078 851 44
Full Text Views 140 18 0
PDF Downloads 105 23 0