Performance on an Associative Memory Test Decreases 8 hr After Cardiovascular Exercise

in Journal of Sport and Exercise Psychology
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $84.00

1 year subscription

USD  $111.00

Student 2 year subscription

USD  $159.00

2 year subscription

USD  $208.00

This study was designed to assess the effects of acute exercise on performance of a paired associate learning (PAL) test, an operationalization of hippocampal-dependent associative memory. Participants performed a PAL test and then ran on a treadmill (exercise group, n = 52) or solved Sudoku puzzles (control group, n = 54). Participants returned 2, 5, or 8 hr later to perform a second, different, PAL test. PAL scores for the control group did not change over time. Similarly, scores on tests taken 2 and 5 hr after exercise were not different from baseline or control data. Scores on tests taken 8 hr after exercise, however, fell significantly below baseline (by 8.6%) and control (by 9.8%) scores. These data demonstrate that acute exercise can negatively affect the encoding and retrieval of new information even hours after the exercise bout, which should be a consideration when designing exercise programs to enhance, and not hinder, learning.

Pahwa is with the Faculty of Medicine and Dentistry; Miller and Collins, the Faculty of Kinesiology, Sport, and Recreation; and Caplan, the Dept. of Psychology, Neuroscience and Mental Health Inst., University of Alberta, Edmonton, AB, Canada.

Pahwa (apahwa@ualberta.ca) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 445 KB)
    • Supplementary Table 2 (PDF 118 KB)
  • Amireault , S. , & Godin , G. (2015). The Godin-Shephard leisure-time physical activity questionnaire: Validity evidence supporting its use for classifying healthy adults into active and insufficiently active categories. Perceptual and Motor Skills, 120(2), 604622. PubMed ID: 25799030 doi:10.2466/03.27.PMS.120v19x7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson , R.C. , & Shiffrin , R.M. (1971). The control of short-term memory. Scientific American, 225(2), 8291. PubMed ID: 5089457 doi:10.1038/scientificamerican0871-82

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basso , J.C. , Shang , A. , Elman , M. , Karmouta , R. , & Suzuki , W.A. (2010). Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults. Journal of the International Neuropsychological Society, 21(10), 791801. doi:10.1017/S135561771500106X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blough , J. , & Loprinzi , P.D. (2019). Experimental manipulation of psychological control scenarios: Implications for exercise and memory research. Psych, 1(1), 279289. doi:10.3390/psych1010019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosch , B.M. , Bringard , A. , Logrieco , M.G. , Lauer , E. , Imobersteg , N.M. , Ferretti , G. , … Igloi , K. (2019). Acute physical exercise improves memory consolidation in humans via BDNF and endocannabinoid signaling. bioRxiv, 211227. doi:10.1101/211227

    • Search Google Scholar
    • Export Citation
  • Caplan , J.B. , & Madan , C.R. (2016). Word imageability enhances association-memory by increasing hippocampal engagement. Journal of Cognitive Neuroscience, 28(10), 15221538. PubMed ID: 27315268 doi:10.1162/jocn_a_00992

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castellano , V. , & White , L.J. (2008). Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. Journal of the Neurological Sciences, 269(1), 8591. doi:10.1016/j.jns.2007.12.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2015). Perceived exertion (Borg Rating of Perceived Exertion Scale) physical activity | CDC. Retrieved from https://www.cdc.gov/physicalactivity/basics/measuring/exertion.htm

    • Search Google Scholar
    • Export Citation
  • Centers for Disease Control and Prevention. (2016 ). Target heart rate and estimated maximum heart rate physical activity | CDC. Retrieved from https://www.cdc.gov/physicalactivity/basics/measuring/heartrate.htm

    • Search Google Scholar
    • Export Citation
  • Chang , Y.K. , Labban , J.D. , Gapin , J.I. , & Etnier , J.L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87101. PubMed ID: 22480735 doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles , K. , & Tomporowski , P.D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333344. PubMed ID: 18074301 doi:10.1080/02640410701591417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotman , C.W. , & Berchtold , N.C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295301. PubMed ID: 12086747 doi:10.1016/S0166-2236(02)02143-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covassin , T. , Weiss , L. , Powell , J. , & Womack , C. (2007). Effects of a maximal exercise test on neurocognitive function. British Journal of Sports Medicine, 41(6), 370374. doi:10.1136/bjsm.2006.032334

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crush , E.A. , & Loprinzi , P.D. (2017). Dose-response effects of exercise duration and recovery on cognitive functioning. Perceptual and Motor Skills, 124(6), 11641193. PubMed ID: 28829227 doi:10.1177/0031512517726920

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eich , T.S. , & Metcalfe , J. (2009). Effects of the stress of marathon running on implicit and explicit memory. Psychonomic Bulletin & Review, 16(3), 475479. doi:10.3758/PBR.16.3.475

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eichenbaum , H. (2009). The cognitive neuroscience of memory: An introduction. Oxford Scholarship Online. doi:10.1093/acprof:oso/9780195141740.001.0001

    • Search Google Scholar
    • Export Citation
  • Ferris , L.T. , Williams , J.S. , & Shen , C.L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine & Science in Sports & Exercise, 39(4), 728734. PubMed ID: 17414812 doi:10.1249/mss.0b013e31802f04c7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Godin , G. (2011). The Godin-Shephard leisure-time physical activity questionnaire. The Health and Fitness Journal of Canada, 4(1), 1822.

    • Search Google Scholar
    • Export Citation
  • Godin , G. , & Shephard , R.J. (1985). A simple method to assess exercise behavior in the community. Canadian Journal of Applied Sport Sciences, 10(3), 141146.

    • Search Google Scholar
    • Export Citation
  • Jacobs , J.D. , Ainsworth , B.E. , Hartman , T.J. , & Leon , A.S. (1993). A simultaneous evaluation of 10 commonly used physical activity questionnaires. Medicine & Science in Sports & Exercise, 25(1), 8191. PubMed ID: 8423759 doi:10.1249/00005768-199301000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaepen , K. , Goekint , M. , Heyman , E.M. , & Meeusen , R. (2010). Neuroplasticity: Exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Medicine, 40(9), 765801. PubMed ID: 20726622 doi:10.2165/11534530-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koppenaal , L. , & Glanzer , M. (1990). An examination of the continuous distractor task and the “long-term recency effect”. Memory and Cognition, 18(2), 183195. PubMed ID: 2319960 doi:10.3758/BF03197094

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labban , J.D. , & Etnier , J.L. (2011). Effects of acute exercise on long-term memory. Research Quarterly for Exercise and Sport, 82(4), 712721. PubMed ID: 22276413 doi:10.1080/02701367.2011.10599808

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi , P.D. (2018). Intensity-specific effects of acute exercise on human memory function: Considerations for the timing of exercise and the type of memory. Health Promotion Perspectives, 8(4), 255262. PubMed ID: 30479978 doi:10.15171/hpp.2018.36

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi , P.D. (2019a). The effects of exercise on long-term potentiation: A candidate mechanism of the exercise-memory relationship. OBM Neurobiology, 3(2), 113. doi:10.21926/obm.neurobiol.1902026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loprinzi , P.D. (2019b). Does brain-derived neurotrophic factor mediate the effects of exercise on memory? Physician and Sportsmedicine, 47(4), 395405. doi:10.1080/00913847.2019.1610255

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsui , T. , Ishikawa , T. , Ito , H. , Okamoto , M. , Inoue , K. , Lee , M. , … Soya , H. (2012). Brain glycogen supercompensation following exhaustive exercise. The Journal of Physiology, 590(3), 607616. PubMed ID: 22063629 doi:10.1113/jphysiol.2011.217919

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayes , A. , Montaldi , D. , & Migo , E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11(3), 126135. PubMed ID: 17270487 doi:10.1016/j.tics.2006.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNerney , M.W. , & Radvansky , G.A. (2015). Mind racing: The influence of exercise on long-term memory consolidation. Memory, 23(8), 11401151. PubMed ID: 25312348 doi:10.1080/09658211.2014.962545

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oz , G. , Kumar , A. , Rao , J.P. , Kodl , C.T. , Chow , L. , Eberly , L.E. , & Seaquist , E.R. (2009). Human brain glycogen metabolism during and after hypoglycemia. Diabetes, 58(9), 19781985. PubMed ID: 19502412 doi:10.2337/db09-0226

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paivio , A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76(3), 241263. doi:10.1037/h0027272

  • Poo , M.M. , Pignatelli , M. , Ryan , T.J. , Tonegawa , S. , Bonhoeffer , T. , Martin , K.C. , … Mullins , C. (2016). What is memory? The present state of the engram. BMC Biology, 14(1), 40. doi:10.1186/s12915-016-0261-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter , D. , & Keeling , D. (2005). Effects of moderate exercise and circadian rhythms on human memory. Journal of Sport and Exercise Psychology, 27(2005), 117125. doi:10.1123/jsep.27.1.117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roig , M. , Nordbrandt , S. , Geertsen , S.S. , & Nielsen , J.B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8), 16451666. doi:10.1016/j.neubiorev.2013.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roig , M. , Thomas , R. , Mang , C.S. , Snow , N.J. , Ostadan , F. , Boyd , L.A. , & Lundbye-Jensen , J. (2016). Time-dependent effects of cardiovascular exercise on memory. Exercise and Sport Sciences Reviews, 44(2), 8188. PubMed ID: 26872291 doi:10.1249/JES.0000000000000078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Segal , S.K. , Cotman , C.W. , & Cahill , L.F. (2012). Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. Journal of Alzheimers Disease, 32(4), 10111018. PubMed ID: 32061032 doi:10.3233/JAD-2012-121078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siscovick , D.S. , Laporte , R.E. , & Newman , J.M. (1985). The disease-specific benefits and risks of physical activity and exercise. Public Health Reports, 100(2), 180188. PubMed ID: 3920716

    • Search Google Scholar
    • Export Citation
  • Skriver , K. , Roig , M. , Lundbye-Jensen , J. , Pingel , J. , Helge , J.W. , Kiens , B. , & Nielsen , J.B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 4658. PubMed ID: 25128877 doi:10.1016/j.nlm.2014.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sothern , M.S. , Loftin , M. , Suskind , R.M. , Udall , J.N. , & Blecker , U. (1999). The health benefits of physical activity in children and adolescents: Implications for chronic disease prevention. European Journal of Pediatrics, 158(4), 271274. PubMed ID: 10206121 doi:10.1007/s004310051070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang , S.W. , Chu , E. , Hui , T. , Helmeste , D. , & Law , C. (2008). Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neuroscience Letters, 431(1), 6265. PubMed ID: 18068900 doi:10.1016/j.neulet.2007.11.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski , P.D. , & Ellis , N.R. (1986). Effects of exercise on cognitive processes: A review. Psychological Bulletin, 99(3), 338346. doi:10.1037/0033-2909.99.3.338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski , P.D. , Ellis , N.R. , & Stephens , R. (1987). The immediate effects of strenuous exercise on free-recall memory. Ergonomics, 30(1), 121129. PubMed ID: 3830124 doi:10.1080/00140138708969682

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsai , S.F. , Chen , P.C. , Calkins , M.J. , Wu , S.Y. , & Kuo , Y.M. (2016). Exercise counteracts aging-related memory impairment: A potential role for the astrocytic metabolic shuttle. Frontiers in Aging Neuroscience, 8, 57. PubMed ID: 27047373 doi:10.3389/fnagi.2016.00057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Dongen , E.V. , Kersten , I.H.P. , Wagner , I.C. , Morris , R.G.M. , & Fernández , G. (2016). Physical exercise performed four hours after learning improves memory retention and increases hippocampal pattern similarity during retrieval. Current Biology, 26(13), 17221727. PubMed ID: 27321998 doi:10.1016/j.cub.2016.04.071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warburton , D.E. , Nicol , C.W. , & Bredin , S.S. (2006). Health benefits of physical activity: The evidence. CMAJ, 174(6), 801809. PubMed ID: 16534088 doi:10.1503/cmaj.051351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson , M. (1988). MRC psycholinguistic database: Machine-usable dictionary, version 2.00. Behavior Research Methods, Instruments, and Computers, 20(1), 610. doi:10.3758/BF03202594

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winter , B. , Breitenstein , C. , Mooren , F.C. , Voelker , K. , Fobker , M. , Lechtermann , A. , … Knecht , S. (2007). High impact running improves learning. Neurobiology of Learning and Memory, 87(4), 597609. PubMed ID: 17185007 doi:10.1016/j.nlm.2006.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yarrow , J.F. , White , L.J. , McCoy , S.C. , & Borst , S.E. (2010). Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neuroscience Letters, 479(2), 161165. PubMed ID: 20553806 doi:10.1016/j.neulet.2010.05.058

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 64 64 64
Full Text Views 8 8 8
PDF Downloads 6 6 6