Motion-Onset Visual Potentials Evoked in a Sport-Specific Visuomotor Reaction Task

in Journal of Sport and Exercise Psychology
View More View Less
  • 1 LUNEX International University of Health, Exercise and Sports
  • 2 Fédération Luxemburgeoise de Tennis du Table
  • 3 China Table Tennis College Europe
  • 4 German Sport University Cologne
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $85.00

1 year online subscription

USD  $114.00

Student 2 year online subscription

USD  $162.00

2 year online subscription

USD  $216.00

Although neural visual processes play a crucial role in sport, experiments have been restricted to laboratory conditions lacking ecological validity. Therefore, this study examined the feasibility of measuring visual evoked potentials in a sport-specific visuomotor task. A total of 18 international elite young table tennis athletes (mean age 12.5 years) performed a computer-based and a sport-specific visuomotor reaction task in response to radial motion-onset stimuli on a computer screen and table tennis balls played by a ball machine, respectively. A 64-channel electroencephalography system identified the N2 and N2-r motion-onset visual evoked potentials in the motion-sensitive midtemporal visual area. Visual evoked potential amplitudes were highly correlated between conditions (N2 r = .72, N2-r r = .74) although significantly lower in the sport-specific task than in the lab-based task (N2 p < .001, N2-r p < .001). The results suggest that sport-specific visual stimulation is feasible to evoke visual potentials. This emphasizes the investigation of visual processes under more ecologically valid conditions in sport and exercise science.

Hülsdünker and Mierau are with the Dept. of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg. Ostermann is with the Fédération Luxemburgeoise de Tennis du Table, Strassen, Luxembourg, and China Table Tennis College Europe, Strassen, Luxembourg. Mierau is also with the Inst. of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.

Hülsdünker (thorben.huelsduenker@lunex-university.net) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 527 KB)
    • Supplementary Table 1 (PDF 105 KB)
  • Akpinar, S., Devrilmez, E., & Kirazci, S. (2012). Coincidence-anticipation timing requirements are different in racket sports. Perceptual and Motor Skills, 115(2), 581593. PubMed ID: 23265020 doi:10.2466/30.25.27.PMS.115.5.581-593

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bankosz, Z., Nawara, H., & Ociepa, M. (2013). Assessement of simple reaction time in badminton players. Trends in Sport Sciences, 1(20), 5461.

    • Search Google Scholar
    • Export Citation
  • Baumeister, J., Reinecke, K., Cordes, M., Lerch, C., & Weiss, M. (2010). Brain activity in goal-directed movements in a real compared to a virtual environment using the Nintendo Wii. Neuroscience Letters, 481(1), 4750. PubMed ID: 20600604 doi:10.1016/j.neulet.2010.06.051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belli, T., Misuta, M.S., de Moura, P.P.R., Tavares, T.D.S., Ribeiro, R.A., Dos Santos, Y.Y.S., … Galatti, L.R. (2019). Reproducibility and validity of a stroke effectiveness test in table tennis based on the temporal game structure. Frontiers in Psychology. Advance online publication. PubMed ID: 30890981 doi:10.3389/fpsyg.2019.00427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bhabhor, M.K., Vidja, K., Bhanderi, P., Dodhia, S., Kathrotia, R., & Joshi, V. (2013). A comparative study of visual reaction time in table tennis players and healthy controls. Indian Journal of Physiology and Pharmacology, 57(4), 439442. PubMed ID: 24968584

    • Search Google Scholar
    • Export Citation
  • Born, R.T., & Bradley, D.C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28, 157189. PubMed ID: 16022593 doi:10.1146/annurev.neuro.26.041002.131052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosco, G., Carrozzo, M., & Lacquaniti, F. (2008). Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation. The Journal of Neuroscience, 28(46), 1207112084. doi:10.1523/JNEUROSCI.2869-08.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaumon, M., Bishop, D.V.M., & Busch, N.A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250, 4763. PubMed ID: 25791012 doi:10.1016/j.jneumeth.2015.02.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

  • Delorme, A., & Makeig, S. (2004). Eeglab: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 921. PubMed ID: 15102499 doi:10.1016/j.jneumeth.2003.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dicks, M., Davids, K., & Button, C. (2009). Representative task designs for the study of perception and action in sport. International Journal of Sport Psychology, 40(4), 506524.

    • Search Google Scholar
    • Export Citation
  • Fort, A., Besle, J., Giard, M.H., & Pernier, J. (2005). Task-dependent activation latency in human visual extrastriate cortex. Neuroscience Letters, 379(2), 144148. PubMed ID: 15823432 doi:10.1016/j.neulet.2004.12.076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, P.W., & Bui, B.H. (1996). A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalography and Clinical Neurophysiology, 101(6), 511519. PubMed ID: 9020824 doi:10.1016/S0013-4694(96)95190-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollants-Gilhuijs, M.A., Munck, J.C. de Kubova, Z., van Royen, E., & Spekreijse, H. (2000). The development of hemispheric asymmetry in human motion VEPs. Vision Research, 40(1), 111. PubMed ID: 10768037 doi:10.1016/S0042-6989(99)00173-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hülsdünker, T., Ostermann, M., & Mierau, A. (2019a). Standardised computer-based reaction tests predict the sport-specific visuomotor speed and performance of young elite table tennis athletes. International Journal of Performance Analysis in Sport, 19(6), 953970. doi:10.1080/24748668.2019.1688071

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hülsdünker, T., Ostermann, M., & Mierau, A. (2019b). The speed of neural visual motion perception and processing determines the visuomotor reaction time of young elite table tennis athletes. Frontiers in Behavioral Neuroscience, 13, 879. doi:10.3389/fnins.2019.00879

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hülsdünker, T., Struder, H.K., & Mierau, A. (2016). Neural correlates of expert visuomotor performance in badminton players. Medicine & Science in Sports & Exercise, 48(11), 21252134. doi:10.1249/MSS.0000000000001010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hülsdünker, T., Strüder, H.K., & Mierau, A. (2017a). Visual but not motor processes predict simple visuomotor reaction time of badminton players. European Journal of Sport Science, 71(6), 111.

    • Search Google Scholar
    • Export Citation
  • Hülsdünker, T., Strüder, H.K., & Mierau, A. (2017b). Visual motion processing subserves faster visuomotor reaction in badminton players. Medicine & Science in Sports & Exercise, 49(6), 10971110. doi:10.1249/MSS.0000000000001198

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ismail, F.Y., Fatemi, A., & Johnston, M.V. (2017). Cerebral plasticity: Windows of opportunity in the developing brain. European Journal of Paediatric Neurology, 21(1), 2348. doi:10.1016/j.ejpn.2016.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, H., Xu, G., Zhang, J.X., Gao, H., Ye, Z., Wang, P., … Lin, C.D. (2011). Event-related potential effects of superior action anticipation in professional badminton players. Neuroscience Letters, 492(3), 139144. PubMed ID: 21300138 doi:10.1016/j.neulet.2011.01.074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, H., Xu, G., Zhang, J.X., Ye, Z., Wang, S., Zhao, L., … Mo, L. (2010). Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology, 78(3), 308314. doi:10.1016/j.ijpsycho.2010.09.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kavcic, V., Martin, T., & Zalar, B. (2013). Aging effects on visual evoked potentials (VEPs) for motion direction discrimination. International Journal of Psychophysiology, 89(1), 7887. doi:10.1016/j.ijpsycho.2013.05.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawakami, O., Kaneoke, Y., Maruyama, K., Kakigi, R., Okada, T., Sadato, N., & Yonekura, Y. (2002). Visual detection of motion speed in humans: Spatiotemporal analysis by fMRI and MEG. Human Brain Mapping, 16(2), 104118. PubMed ID: 11954060 doi:10.1002/hbm.10033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawano, K., Shidara, M., Watanabe, Y., & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. Journal of Neurophysiology, 71(6), 23052324. PubMed ID: 7931519 doi:10.1152/jn.1994.71.6.2305

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kita, Y., Mori, A., & Nara, M. (2001). Two types of movement-related cortical potentials preceding wrist extension in humans. Neuroreport, 12(10), 22212225. PubMed ID: 11447338 doi:10.1097/00001756-200107200-00035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleiser, R., Seitz, R.J., & Krekelberg, B. (2004). Neural correlates of saccadic suppression in humans. Current Biology: CB, 14(5), 386390. PubMed ID: 15028213 doi:10.1016/j.cub.2004.02.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koessler, L., Maillard, L., Benhadid, A., Vignal, J.P., Felblinger, J., Vespignani, H., & Braun, M. (2009). Automated cortical projection of EEG sensors: Anatomical correlation via the international 10-10 system. NeuroImage, 46(1), 6472. PubMed ID: 19233295 doi:10.1016/j.neuroimage.2009.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kremlacek, J., Kuba, M., Kubova, Z., & Chlubnova, J. (2004). Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Documenta Ophthalmologica. Advances in Ophthalmology, 109(2), 169175. PubMed ID: 15881263 doi:10.1007/s10633-004-4048-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kremlacek, J., Kuba, M., Kubova, Z., Langrova, J., Vit, F., & Szanyi, J. (2007). Within-session reproducibility of motion-onset VEPs: Effect of adaptation/habituation or fatigue on N2 peak amplitude and latency. Documenta Ophthalmologica. Advances in Ophthalmology, 115(2), 95103. PubMed ID: 17541662 doi:10.1007/s10633-007-9063-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuba, M., Kubova, Z., Kremlacek, J., & Langrova, J. (2007). Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Research, 47(2), 189202. PubMed ID: 17129593 doi:10.1016/j.visres.2006.09.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maruyama, K., Kaneoke, Y., Watanabe, K., & Kakigi, R. (2002). Human cortical responses to coherent and incoherent motion as measured by magnetoencephalography. Neuroscience Research, 44(2), 195205. PubMed ID: 12354634 doi:10.1016/S0168-0102(02)00129-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 15(10), 475482. PubMed ID: 21906988 doi:10.1016/j.tics.2011.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muraskin, J., Sherwin, J., & Sajda, P. (2015). Knowing when not to swing: EEG evidence that enhanced perception-action coupling underlies baseball batter expertise. NeuroImage, 123, 110. PubMed ID: 26299795 doi:10.1016/j.neuroimage.2015.08.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reinecke, K., Cordes, M., Lerch, C., Koutsandréou, F., Schubert, M., Weiss, M., & Baumeister, J. (2011). From lab to field conditions: A pilot study on EEG methodology in applied sports sciences. Applied Psychophysiology and Biofeedback, 36(4), 265271. PubMed ID: 21800184 doi:10.1007/s10484-011-9166-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, Y., Huang, Z., Guo, Y., Wu, J., & Sun, Y. (2019). Kinematic characteristics of backhand block in table tennis. In Proceedings of the 2019 4th International Conference on Biomedical Signal and Image Processing (ICBIP 2019) (pp. 4145). New York, NY: ACM Press.

    • Export Citation
  • Renshaw, I., Davids, K., Araújo, D., Lucas, A., Roberts, W.M., Newcombe, D. J., & Franks, B. (2018). Evaluating weaknesses of “perceptual-cognitive training” and “brain training” methods in sport: An ecological dynamics critique. Frontiers in Psychology, 9, 2468. PubMed ID: 30719015 doi:10.3389/fpsyg.2018.02468

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, S.T., Vickers, J.N., & Williams, A.M. (2002). Head, eye and arm coordination in table tennis. Journal of Sports Sciences, 20(3), 187200. PubMed ID: 11999475 doi:10.1080/026404102317284754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayette, M.A., Griffin, K.M., & Sayers, W.M. (2010). Counterbalancing in smoking cue research: A critical analysis. Nicotine & Tobacco Research, 12(11), 10681079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenk, T., Ellison, A., Rice, N., & Milner, A.D. (2005). The role of V5/MT+ in the control of catching movements: An rTMS study. Neuropsychologia, 43(2), 189198. PubMed ID: 15707904 doi:10.1016/j.neuropsychologia.2004.11.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulte-Körne, G., Bartling, J., Deimel, W., & Remschmidt, H. (2004). Visual evoked potential elicited by coherenty moving dots in dyslexic children. Neuroscience Letters, 357(3), 207210. PubMed ID: 15003286 doi:10.1016/j.neulet.2003.12.098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonetta, M., Clanet, M., & Rascol, O. (1991). Bereitschaftspotential in a simple movement or in a motor sequence starting with the same simple movement. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 81(2), 129134. doi:10.1016/0168-5597(91)90006-J

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thibault, R.T., Lifshitz, M., Jones, J.M., & Raz, A. (2014). Posture alters human resting-state. Cortex, 58, 199205. PubMed ID: 25041937 doi:10.1016/j.cortex.2014.06.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, X., Kong, C.T., & Zhi, F.Q. (Eds.). (2002). Speed and spin of 40mm table tennis ball and the effects on elite players. Symposium conducted at the 20th International Symposium on Biomechanics in Sports, Careres, Extramadura, Spain.

    • Search Google Scholar
    • Export Citation
  • Wurtz, R.H. (2008). Neuronal mechanisms of visual stability. Vision Research, 48(20), 20702089. PubMed ID: 18513781 doi:10.1016/j.visres.2008.03.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwierko, T., Osinski, W., Lubinski, W., Czepita, D., & Florkiewicz, B. (2010). Speed of visual sensorimotor processes and conductivity of visual pathway in volleyball players. Journal of Human Kinetics, 23, 2127. doi:10.2478/v10078-010-0003-8

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 335 335 115
Full Text Views 42 42 13
PDF Downloads 18 18 1