A Longitudinal Analysis of the Executive Functions in High-Level Soccer Players

in Journal of Sport and Exercise Psychology

Click name to view affiliation

Adam BeavanSaarland University
University of Technology
German Football Association

Search for other papers by Adam Beavan in
Current site
Google Scholar
PubMed
Close
*
,
Vincent ChinUniversity of Melbourne
University of New South Wales

Search for other papers by Vincent Chin in
Current site
Google Scholar
PubMed
Close
*
,
Louise M. RyanUniversity of Melbourne
University of Technology Sydney
Harvard University

Search for other papers by Louise M. Ryan in
Current site
Google Scholar
PubMed
Close
*
,
Jan SpielmannTSG 1899 Hoffenheim

Search for other papers by Jan Spielmann in
Current site
Google Scholar
PubMed
Close
*
,
Jan MayerTSG 1899 Hoffenheim

Search for other papers by Jan Mayer in
Current site
Google Scholar
PubMed
Close
*
,
Sabrina SkorskiSaarland University

Search for other papers by Sabrina Skorski in
Current site
Google Scholar
PubMed
Close
*
,
Tim MeyerSaarland University

Search for other papers by Tim Meyer in
Current site
Google Scholar
PubMed
Close
*
, and
Job FransenUniversity of Technology

Search for other papers by Job Fransen in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Introduction: Assessments of executive functions (EFs) with varying levels of perceptual information or action fidelity are common talent-diagnostic tools in soccer, yet their validity still has to be established. Therefore, a longitudinal development of EFs in high-level players to understand their relationship with increased exposure to training is required. Methods: A total of 304 high-performing male youth soccer players (10–21 years old) in Germany were assessed across three seasons on various sport-specific and non-sport-specific cognitive functioning assessments. Results: The posterior means (90% highest posterior density) of random slopes indicated that both abilities predominantly developed between 10 and 15 years of age. A plateau was apparent for domain-specific abilities during adolescence, whereas domain-generic abilities improved into young adulthood. Conclusion: The developmental trajectories of soccer players’ EFs follow the general populations’ despite long-term exposure to soccer-specific training and game play. This brings into question the relationship between high-level experience and EFs and renders including EFs in talent identification questionable.

Beavan, Skorski, and Meyer are with the Inst. of Sports and Preventive Medicine, Saarland University, Saarbrücken, Germany. Beavan and Fransen are with the Sport and Exercise Discipline Group, Faculty of Health, and Ryan, the School of Mathematical and Physical Sciences, University of Technology, Sydney, NSW, Australia. Beavan is also with DFB-Akademie (Deutscher Fußball-Bund), German Football Association, Frankfurt, Germany. Chin and Ryan are with the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, University of Melbourne, Melbourne, VIC, Australia. Chin is also with the School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia. Ryan also is with the Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, MA, USA. Spielmann and Mayer are with the TSG 1899 Hoffenheim, Zuzenhausen, Germany.

Beavan (adam.beavan@uni-saarland.de) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 370 KB)
    • Supplementary Table 2 (PDF 248 KB)
  • Collapse
  • Expand
  • Barela, J., Rocha, A., Novak, A., Fransen, J., & Figueiredo, A. (2019). Age differences in the use of implicit visual cues in the decision-making. Brazilian Journal of Motor Behavior, 13(2), 8693. doi:10.20338/bjmb.v13i2.139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beavan, A., Fransen, J., Spielmann, J., Mayer, J., Skorski, S., & Meyer, T. (2018). The Footbonaut as a new football-specific skills test: Reproducibility and age-related differences in highly trained youth players. Science & Medicine in Football, 3(3), 177182. doi:10.1080/24733938.2018.1548772

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beavan, A., Spielmann, J., Mayer, J., Skorski, S., Meyer, T., & Fransen, J. (2019). Age-related differences in executive functions within high-level youth soccer players. Brazilian Journal of Motor Behavior, 13(2), 6475. doi:10.20338/bjmb.v13i2.131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beavan, A., Spielmann, J., Mayer, J., Skorski, S., Meyer, T., & Fransen, J. (2020). The rise and fall of executive functions in high-level football players. Psychology of Sport and Exercise, 49, 101677. doi:10.1016/j.psychsport.2020.101677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, J.R., & Miller, P.H. (2010). A developmental perspective on executive function. Child Development, 81(6), 16411660. PubMed ID: 21077853 doi:10.1111/j.1467-8624.2010.01499.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bialystok, E., Craik, F.I., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16(4), 240250. PubMed ID: 22464592 doi:10.1016/j.tics.2012.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Côté, J., & Vierimaa, M. (2014). The developmental model of sport participation: 15 years after its first conceptualization. Science & Sports, 29(Suppl.), S63S69. doi:10.1016/j.scispo.2014.08.133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crone, E.A., Peters, S., & Steinbeis, N. (2017). Executive function development in adolescence executive function (pp. 5872). New York, NY: Routledge.

    • Search Google Scholar
    • Export Citation
  • Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 466503). Oxford, England: Oxford University Press. doi:10.1093/acprof:oso/9780195134971.003.0029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135168. PubMed ID: 23020641 doi:10.1146/annurev-psych-113011-143750

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959964. PubMed ID: 21852486 doi:10.1126/science.1204529

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dicks, M., Davids, K., & Button, C. (2009). Representative task design for the study of perception and action in sport. International Journal of Sport Psychology, 40(4), 506.

    • Search Google Scholar
    • Export Citation
  • Dunson, D.B. (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(2), 355366. doi:10.1111/1467-9868.00236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelhardt, L.E., Harden, K.P., Tucker-Drob, E.M., & Church, J.A. (2019). The neural architecture of executive functions is established by middle childhood. NeuroImage, 185(1), 479489. PubMed ID: 30312810 doi:10.1016/j.neuroimage.2018.10.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ericsson, K.A. (2014). Why expert performance is special and cannot be extrapolated from studies of performance in the general population: A response to criticisms. Intelligence, 45(1), 81103. doi:10.1016/j.intell.2013.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ericsson, K.A., Hoffman, R.R., & Kozbelt, A. (2018). The Cambridge handbook of expertise and expert performance.Cambridge, UK: Cambridge University Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faubert, J., & Sidebottom, L. (2012). Perceptual-cognitive training of athletes. Journal of Clinical Sport Psychology, 6(1), 85102. doi:10.1123/jcsp.6.1.85

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedman, N.P., Miyake, A., Corley, R.P., Young, S.E., DeFries, J.C., & Hewitt, J.K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17(2), 172179. PubMed ID: 16466426 doi:10.1111/j.1467-9280.2006.01681.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Furley, P., & Wood, G. (2016). Working memory, attentional control, and expertise in sports: A review of current literature and directions for future research. Journal of Applied Research in Memory and Cognition, 5(4), 415425. doi:10.1016/j.jarmac.2016.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., & Rubin, D.B. (2013). Bayesian data analysis (3rd ed.). London, UK: Chapman and Hall/CRC.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, S.J., Vella, S.A., & Cliff, D.P. (2018). Children’s sports participation and self-regulation: Bi-directional longitudinal associations. Early Childhood Research Quarterly, 42(1), 140147. doi:10.1016/j.ecresq.2017.09.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huizinga, M., Dolan, C.V., & van der Molen, M.W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44(11), 20172036. PubMed ID: 16527316 doi:10.1016/j.neuropsychologia.2006.01.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huizinga, M., & Smidts, D.P. (2010). Age-related changes in executive function: A normative study with the Dutch version of the Behavior Rating Inventory of Executive Function (BRIEF). Child Neuropsychology, 17(1), 5166. doi:10.1080/09297049.2010.509715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacobson, J., & Matthaeus, L. (2014). Athletics and executive functioning: How athletic participation and sport type correlate with cognitive performance. Psychology of Sport and Exercise, 15(5), 521527. doi:10.1016/j.psychsport.2014.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kida, N., Oda, S., & Matsumura, M. (2005). Intensive baseball practice improves the go/nogo reaction time, but not the simple reaction time. Cognitive Brain Research, 22(2), 257264. PubMed ID: 15653298 doi:10.1016/j.cogbrainres.2004.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S.-C., Lindenberger, U., Hommel, B., Aschersleben, G., Prinz, W., & Baltes, P.B. (2004). Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span. Psychological Science, 15(3), 155163. PubMed ID: 15016286 doi:10.1111/j.0956-7976.2004.01503003.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luna, B. (2009). Developmental changes in cognitive control through adolescence. Advances in Child Development and Behavior, 37(1), 233278. PubMed ID: 19673164 doi:10.1016/S0065-2407(09)03706-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundgren, T., Högman, L., Näslund, M., & Parling, T. (2016). Preliminary investigation of executive functions in elite ice hockey players. Journal of Clinical Sport Psychology, 10(4), 324335. doi:10.1123/jcsp.2015-0030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macnamara, B.N., Hambrick, D.Z., & Oswald, F.L. (2018). Corrigendum: Deliberate practice and performance in music, games, sports, education, and professions: A meta-analysis. Psychological Science, 29(7), 12021204. doi:10.1177/0956797618769891

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malina, R.M., Bouchard, C., & Bar-Or, O. (2004). Growth, maturation, and physical activity. Champaign, IL: Human Kinetics.

  • Mann, D.T., Williams, A.M., Ward, P., & Janelle, C.M. (2007). Perceptual-cognitive expertise in sport: A meta-analysis. Journal of Sport & Exercise Psychology, 29(4), 457478. doi:10.1123/jsep.29.4.457

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamoto, H., & Mori, S. (2008). Effects of stimulus-response compatibility in mediating expert performance in baseball players. Brain Research, 1189(1), 179188. PubMed ID: 18048011 doi:10.1016/j.brainres.2007.10.096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okada, B.M., & Slevc, L.R. (2018). Individual differences in musical training and executive functions: A latent variable approach. Memory & Cognition, 46(7), 10761092. PubMed ID: 29752659 doi:10.3758/s13421-018-0822-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinder, R.A., Davids, K.W., Renshaw, I., & Araújo, D. (2011). Representative learning design and functionality of research and practice in sport. Journal of Sport & Exercise Psychology, 33(1), 146155. doi:10.1123/jsep.33.1.146

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Proust, C., Jacqmin-Gadda, H., Taylor, J.M., Ganiayre, J., & Commenges, D. (2006). A nonlinear model with latent process for cognitive evolution using multivariate longitudinal data. Biometrics, 62(4), 10141024. PubMed ID: 17156275 doi:10.1111/j.1541-0420.2006.00573.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, C., & Casella, G. (2004). Monte Carlo statistical methods (2nd ed.). New York, NY: Springer-Verlag.

  • Scharfen, H.E., & Memmert, D. (2019). Measurement of cognitive functions in experts and elite-athletes: A meta-analytic review. Applied Cognitive Psychology, 33(5), 843860. doi:10.1002/acp.3526

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuhfried, G. (2001). Sport psychology: Sport test battery for diagnostics and training. Mödling, Austria: Dr. Schuhfried Ges.m.b.H.

  • Voss, M.W., Kramer, A.F., Basak, C., Prakash, R.S., & Roberts, B. (2010). Are expert athletes “expert” in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Applied Cognitive Psychology, 24(6), 812826. doi:10.1002/acp.1588

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-H., Tsai, C.-L., Tu, K.-C., Muggleton, N.G., Juan, C.-H., & Liang, W.-K. (2015). Modulation of brain oscillations during fundamental visuo-spatial processing: A comparison between female collegiate badminton players and sedentary controls. Psychology of Sport and Exercise, 16, 121129. doi:10.1016/j.psychsport.2014.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-H., & Tu, K.-C. (2017). Neural correlates of expert behavior during a domain-specific attentional cueing task in badminton players. Journal of Sport & Exercise Psychology, 39(3), 209221. doi:10.1123/jsep.2016-0335

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whiteside, A., Parker, G., & Snodgrass, R. (2003). A review of selected tests from the Vienna Test System. Selection and Development Review, 19(4), 711.

    • Search Google Scholar
    • Export Citation
  • Zelazo, P.D., & Carlson, S.M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6(4), 354360.

    • Search Google Scholar
    • Export Citation
  • Zelazo, P.D., Craik, F.I., & Booth, L. (2004). Executive function across the life span. Acta Psychologica, 115(2–3), 167183. doi:10.1016/j.actpsy.2003.12.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelazo, P.D., & Müller, U. (2002). Executive function in typical and atypical development. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 445469). Oxford, UK: Blackwell Publishers.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4665 1563 119
Full Text Views 297 91 9
PDF Downloads 260 117 13