The Effects of Aerobic Versus Cognitively Demanding Exercise Interventions on Executive Functioning in School-Aged Children: A Cluster-Randomized Controlled Trial

Click name to view affiliation

Anna Meijer Vrije Universiteit Amsterdam

Search for other papers by Anna Meijer in
Current site
Google Scholar
PubMed
Close
*
,
Marsh Königs University of Amsterdam

Search for other papers by Marsh Königs in
Current site
Google Scholar
PubMed
Close
*
,
Irene M.J. van der Fels University of Groningen

Search for other papers by Irene M.J. van der Fels in
Current site
Google Scholar
PubMed
Close
*
,
Chris Visscher University of Groningen

Search for other papers by Chris Visscher in
Current site
Google Scholar
PubMed
Close
*
,
Roel J. Bosker University of Groningen

Search for other papers by Roel J. Bosker in
Current site
Google Scholar
PubMed
Close
*
,
Esther Hartman University of Groningen

Search for other papers by Esther Hartman in
Current site
Google Scholar
PubMed
Close
*
, and
Jaap Oosterlaan Vrije Universiteit Amsterdam
University of Amsterdam

Search for other papers by Jaap Oosterlaan in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The authors performed a clustered randomized controlled trial to investigate the effects of an aerobic and a cognitively demanding exercise intervention on executive functions in primary-school-age children compared with the regular physical education program (N = 856). They hypothesized that both exercise interventions would facilitate executive functioning, with stronger effects for the cognitively demanding exercise group. The interventions were provided four times per week for 14 weeks. Linear mixed models were conducted on posttest neurocognitive function measures with baseline level as covariate. No differences were found between the exercise interventions and the control group for any of the measures. Independently of group, dose of moderate to vigorous physical activity was positively related to verbal working memory and attention abilities. This study showed that physical exercise interventions did not enhance executive functioning in children. Exposure to moderate to vigorous physical activity is a crucial aspect of the relationship between physical activity and executive functioning.

Meijer and Oosterlaan are with the Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Königs and Oosterlaan are with the Emma Neuroscience Group, Reproduction and Development, Dept. of Pediatrics, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands. van der Fels, Visscher, and Hartman are with the Center for Human Movement Sciences, University Medical Center Groningen, and Bosker, the Groningen Inst. for Educational Research, University of Groningen, Groningen, the Netherlands.

Meijer (a.meijer@vu.nl) is corresponding author.
  • Collapse
  • Expand
  • Alvarez-Bueno, C., Pesce, C., Cavero-Redondo, I., Sanchez-Lopez, M., Martínez-Hortelano, J.A., & Martinez-Vizcaino, V. (2017). The effect of physical activity interventions on children’s cognition and metacognition: A systematic review and meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56(9), 729738. PubMed ID: 28838577 doi:10.1016/j.jaac.2017.06.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Best, J.R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental Review, 30(4), 331551. PubMed ID: 21818169 doi:10.1016/j.dr.2010.08.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bull, R., Espy, K.A., & Wiebe, S.A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205228. PubMed ID: 18473197 doi:10.1080/87565640801982312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

  • Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., . . . Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 33163321. PubMed ID: 14978288 doi:10.1073/pnas.0400266101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, T.J., & Lobstein, T. (2012). Extended international (IOTF) body mass index cut‐offs for thinness, overweight and obesity. Pediatric Obesity, 7(4), 284294. PubMed ID: 22715120 doi:10.1111/j.2047-6310.2012.00064.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, A., & Koechlin, E. (2012). Reasoning, learning, and creativity: Frontal lobe function and human decision-making. PLoS Biology, 10(3), e1001293. PubMed ID: 22479152 doi:10.1371/journal.pbio.1001293

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Bruijn, A.G.M., Kostons, D.D.N.M., Van der Fels, I.M.J., Visscher, C., Oosterlaan, J., Hartman, E., & Bosker, R.J. (2020). Effects of aerobic and cognitively-engaging physical activity on academic skills: A cluster randomized controlled trial. Journal of Sports Sciences, 38(15), 18061817 . doi:10.1080/02640414.2020.1756680

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Greeff, J.W., Bosker, R.J., Oosterlaan, J., Visscher, C., & Hartman, E. (2018). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. Journal of Science and Medicine in Sport, 21(5), 501507. PubMed ID: 29054748 doi:10.1016/j.jsams.2017.09.595

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333(6045), 959964. PubMed ID: 21852486 doi:10.1126/science.1204529

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diamond, A., & Ling, D.S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 3448. PubMed ID: 26749076 doi:10.1016/j.dcn.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dishman, R.K., Berthoud, H.R., Booth, F.W., Cotman, C.W., Edgerton, V.R., Fleshner, M.R., . . . Zigmond, M.J. (2006). Neurobiology of Exercise. Obesity, 14(3), 345356. PubMed ID: 16648603 doi:10.1038/oby.2006.46

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnelly, J.E., Hillman, C.H., Castelli, D., Etnier, J.L., Lee, S., Tomporowski, P., . . . Szabo-Reed, A.N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Medicine & Science in Sports & Exercise, 48(6), 1197. PubMed ID: 27182986 doi:10.1249/MSS.0000000000000901

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, F., Benzing, V., Conzelmann, A., & Schmidt, M. (2019). Boost your brain, while having a break! The effects of long-term cognitively engaging physical activity breaks on children’s executive functions and academic achievement. PLoS One, 14(3), e0212482. PubMed ID: 30840640 doi:10.1371/journal.pone.0212482

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, F., Conzelmann, A., & Schmidt, M. (2018). The effect of acute cognitively engaging physical activity breaks on children’s executive functions: Too much of a good thing? Psychology of Sport and Exercise, 36, 178186. doi:10.1016/j.psychsport.2018.02.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evenson, K.R., Catellier, D.J., Gill, K., Ondrak, K.S., & McMurray, R.G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 15571565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, A. (2013). Discovering statistics using IBM SPSS statistics. Washington, DCSage.

  • Gabel, L., Ridgers, N.D., Della Gatta, P., Arundell, L., Cerin, E., Robinson, S., . . . Salmon, J. (2016). Associations of sedentary time patterns and TV viewing time with inflammatory and endothelial function biomarkers in children. Pediatric Obesity, 11(3), 194201. PubMed ID: 26097139 doi:10.1111/ijpo.12045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, I., & LeBlanc, A.G. (2010). Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 7(1), 40. PubMed ID: 20459784 doi:10.1186/1479-5868-7-40

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessels, R.P., Van Zandvoort, M.J., Postma, A., Kappelle, L.J., & De Haan, E.H. (2000). The Corsi block-tapping task: Standardization and normative data. Applied Neuropsychology, 7(4), 252258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khan, N.A., & Hillman, C.H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: A Review. Pediatric Exercise Science, 26(2), 138. PubMed ID: 24722921 doi:10.1123/pes.2013-0125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781791. PubMed ID: 12424652 doi:10.1076/jcen.24.6.781.8395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Königs, M., Heij, H.A., van der Sluijs, J.A., Vermeulen, R.J., Goslings, J.C., Luitse, J.S.K., . . . Oosterlaan, J. (2015). Pediatric traumatic brain injury and attention deficit. Pediatrics, 136(3), 534541. PubMed ID: 26240208 doi:10.1542/peds.2015-0437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koutsandreou, F., Wegner, M., Niemann, C., & Budde, H. (2016). Effects of motor versus cardiovascular exercise training on children’s working memory. Medicine & Science in Sports & Exercise, 48(6), 11441152. PubMed ID: 26765631 doi:10.1249/MSS.0000000000000869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other probability functions to a distribution of response times. Tutorials in Quantitative Methods for Psychology, 4(1), 3545. doi:10.20982/tqmp.04.1.p035

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, G.D. (1994). On the ability to inhibit thought and action: A users’ guide to the stop signal paradigm. San Diego, CA: Academic Press.

    • Search Google Scholar
    • Export Citation
  • McMorris, T., & Hale, B.J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3), 338351. PubMed ID: 23064033 doi:10.1016/j.bandc.2012.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meijer, A., Königs, M., de Bruijn, A.G.M., Visser, C., Bosker, R.J., Hartman, E., & Oosterlaan, J. (2020). Cardiovascular fitness and executive functioning in primary school-aged children. Developmental Science, e13019. Advance online publication.  doi:10.1111/desc.13019

    • Search Google Scholar
    • Export Citation
  • Nutley, S.B., Söderqvist, S., Bryde, S., Humphreys, K., & Klingberg, T. (2009). Measuring working memory capacity with greater precision in the lower capacity ranges. Developmental Neuropsychology, 35(1), 8195. PubMed ID: 20390594 doi:10.1080/87565640903325741

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport & Exercise Psychology, 34(6), 766786. PubMed ID: 23204358 doi:10.1123/jsep.34.6.766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pesce, C., Crova, C., Marchetti, R., Struzzolino, I., Masci, I., Vannozzi, G., . . . Forte, R. (2013). Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Mental Health and Physical Activity, 6(3), 172180. doi:10.1016/j.mhpa.2013.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Querido, J.S., & Sheel, A.W. (2007). Regulation of cerebral blood flow during exercise. Sports Medicine, 37(9), 765782. PubMed ID: 17722948 doi:10.2165/00007256-200737090-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Revelle, W. (2018). Psych: Procedures for personality and psychological research. Retrieved from https://CRAN.R-project.org/package=psych

    • Search Google Scholar
    • Export Citation
  • Rueda, M.R., Fan, J., McCandliss, B.D., Halparin, J.D., Gruber, D.B., Lercari, L.P., . . . Posner, M.I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42(8), 10291040. PubMed ID: 15093142 doi:10.1016/j.neuropsychologia.2003.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salthouse, T.A. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19(4), 532. PubMed ID: 16060828 doi:10.1037/0894-4105.19.4.532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sattler, J.M. (2001). Assessment of children: Cognitive applications (Vol. 4). San Diego, CAJM Sattler.

  • Schmidt, M., Jäger, K., Egger, F., Roebers, C.M., & Conzelmann, A. (2015). Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. Journal of Sport & Exercise Psychology, 37(6), 575591. PubMed ID: 26866766 doi:10.1123/jsep.2015-0069

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, A.S., Saliasi, E., Van Den Berg, V., Uijtdewilligen, L., De Groot, R.H., Jolles, J., . . . Diamond, A. (2018). Effects of physical activity interventions on cognitive and academic performance in children and adolescents: A novel combination of a systematic review and recommendations from an expert panel. British Journal of Sports Medicine, 53(10), 640647. PubMed ID: 30061304 doi:10.1136/bjsports-2017-098136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spybrook, J. (2011). Optimal design plus empirical evidence: Documentation for the “Optimal design” software. Retrieved from http://pj.freefaculty.org/software/WinProgs/od-manual-20111016-v300.pdf

    • Search Google Scholar
    • Export Citation
  • Statistics Netherlands. (2006). Education categorization standard [Standaard onderwijsindeling 2006]. Retrieved from www.cbs.nl/nl‐NL/menu/methoden/classificaties/overzicht/soi/2006/default.htm

    • Search Google Scholar
    • Export Citation
  • Sterne, J.A., White, I.R., Carlin, J.B., Spratt, M., Royston, P., Kenward, M.G., . . . Carpenter, J.R. (2009). Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ, 338, b2393. PubMed ID: 19564179 doi:10.1136/bmj.b2393

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, R.A., Harris, A.B., Wiener, E.C., Dutka, M.V., Morris, H.D., Theien, B.E., . . . Greenough, W.T. (2003). Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117(4), 10371046. PubMed ID: 12654355 doi:10.1016/S0306-4522(02)00664-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomkinson, G.R., Lang, J.J., & Tremblay, M.S. (2019). Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. British Journal of Sports Medicine, 53(8), 478486. PubMed ID: 29084727 doi:10.1136/bjsports-2017-097982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D., McCullick, B., Pendleton, D.M., & Pesce, C. (2015). Exercise and children’s cognition: The role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4(1), 4755. doi:10.1016/j.jshs.2014.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D, McCullick, B., & Pesce, C. (2015). Enhancing children’s cognition with physical activity games. Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Tomporowski, P.D., & Pesce, C. (2019). Exercise, sports, and performance arts benefit cognition via a common process. Psychological Bulletin, 145(9), 929951 PubMed ID: 31192623 doi:10.1037/bul0000200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tremblay, M.S., LeBlanc, A.G., Kho, M.E., Saunders, T.J., Larouche, R., Colley, R.C., . . . Gorber, S.C. (2011). Systematic review of sedentary behaviour and health indicators in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 98. PubMed ID: 21936895 doi:10.1186/1479-5868-8-98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trost, S.G., Loprinzi, P.D., Moore, R., & Pfeiffer, K.A. (2011). Comparison of accelerometer cut points for predicting activity intensity in youth. Medicine & Science in Sports & Exercise, 43(7), 13601368. PubMed ID: 21131873 doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Fels, I.M.J., Hartman, E., Bosker, R.J., de Greef, J.W., de Bruijn, A.G.M., Meijer, A., . . . Visser, C. (2020). Effects of aerobic exercise and cognitively engaging exercise on cardiovascular fitness and motor skills in primary school children: A cluster randomized controlled trial. Journal of Sport Sciences, 38(17), 19751983. doi:10.1080/02640414.2020.1765464

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin & Review, 7(3), 424465. PubMed ID: 11082851 doi:10.3758/BF03214357

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaynman, S., & Gomez‐Pinilla, F. (2006). Revenge of the “sit”: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84(4), 699715. PubMed ID: 16862541 doi:10.1002/jnr.20979

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vazou, S., Pesce, C., Lakes, K., & Smiley-Oyen, A. (2019). More than one road leads to Rome: A narrative review and meta-analysis of physical activity intervention effects on cognition in youth. International Journal of Sport and Exercise Psychology, 17(2), 153178. PubMed ID: 31289454 doi:10.1080/1612197X.2016.1223423

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verburgh, L., Scherder, E.J.A., van Lange, P.A.M., & Oosterlaan, J. (2014). Executive functioning in highly talented soccer players. PLoS One, 9(3), e91254. PubMed ID: 24632735 doi:10.1371/journal.pone.0091254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verloigne, M., Van Lippevelde, W., Maes, L., Yıldırım, M., Chinapaw, M., Manios, Y., . . . Brug, J. (2012). Levels of physical activity and sedentary time among 10-to 12-year-old boys and girls across 5 European countries using accelerometers: An observational study within the ENERGY-project. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 34. PubMed ID: 22462550 doi:10.1186/1479-5868-9-34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volksgezondheid en zorg. (2018). Huidige situatie overgewicht kinderen. Retrieved from https://www.volksgezondheidenzorg.info/onderwerp/overgewicht/cijfers‐context/huidige‐situatie#node‐overgewicht‐kinderen

    • Search Google Scholar
    • Export Citation
  • Wechsler, D. (1991). WISC-III: Wechsler intelligence scale for children: Manual. Psychological Corporation.

  • Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record, 58(3), 475482. doi:10.1007/BF03395630

  • World Health Organization. (2010). Global recommendations on physical activity for health. Retrieved from https://apps.who.int/iris/handle/10665/44399

All Time Past Year Past 30 Days
Abstract Views 6641 1368 212
Full Text Views 3337 907 71
PDF Downloads 501 94 3