Examining Neural Activity Related to Pitch Stimuli and Feedback at the Plate: Cognitive and Performance Implications

Click name to view affiliation

Jason R. Themanson Illinois Wesleyan University

Search for other papers by Jason R. Themanson in
Current site
Google Scholar
PubMed
Close
*
,
Alivia Hay Illinois Wesleyan University

Search for other papers by Alivia Hay in
Current site
Google Scholar
PubMed
Close
*
,
Lucas Sieving Illinois Wesleyan University

Search for other papers by Lucas Sieving in
Current site
Google Scholar
PubMed
Close
*
, and
Brad E. Sheese Illinois Wesleyan University

Search for other papers by Brad E. Sheese in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study investigated the relationships among neural activity related to pitch stimuli and task feedback, self-regulatory control, and task-performance measures in expert and novice baseball players. The participants had their event-related brain potentials recorded while they completed a computerized task assessing whether thrown pitches were balls or strikes and received feedback on the accuracy of their responses following each pitch. The results indicated that college players exhibited significantly larger medial frontal negativities to pitch stimuli, as well as smaller reward positivities and larger frontocentral positivities in response to negative feedback, compared with novices. Furthermore, significant relationships were present between college players’ neural activity related to both pitches and feedback and their task performance and self-regulatory behavior. These relationships were not present for novices. These findings suggest that players efficiently associate the information received in their feedback to their self-regulatory processing of the task and, ultimately, their task performance.

The authors are with the Dept. of Psychology, Illinois Wesleyan University, Bloomington, IL, USA.

Themanson (jthemans@iwu.edu) is corresponding author.
  • Collapse
  • Expand
  • Arbel, Y., & Wu, H. (2016). A neurophysiological examination of quality of learning in a feedback-based learning task. Neuropsychologia, 93, 1320. PubMed ID: 27713069 https://doi.org/10.1016/j.neuropsychologia.2016.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, T.E., & Holroyd, C.B. (2011). Dissociated roles of the anterior cingulate cortex in reward and conflict processing as revealed by the feedback error-related negativity and N200. Biological Psychology, 87(1), 2534. PubMed ID: 21295109 https://doi.org/10.1016/j.biopsycho.2011.01.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    • Search Google Scholar
    • Export Citation
  • Botvinick, M.M., Niv, Y., & Barto, A.C. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement-learning perspective. Cognition, 113(3), 262280. PubMed ID: 18926527 https://doi.org/10.1016/j.cognition.2008.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butterfield, B., & Mangels, J.A. (2003). Neural correlates of error detection and correction in a semantic retrieval task. Cognitive Brain Research, 17(3), 793817. PubMed ID: 14561464 https://doi.org/10.1016/S0926-6410(03)00203-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahn, B.R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180211. PubMed ID: 16536641 https://doi.org/10.1037/0033-2909.132.2.180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chatrain, G.E., Lettich, E., & Nelson, P.L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. American Journal of EEG Technology, 25, 8392. https://doi.org/10.1080/00029238.1985.11080163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clayson, P.E., & Larson, M.J. (2012). Cognitive performance and electrophysiological indices of cognitive control: A validation of study of conflict adaptation. Psychophysiology, 49(5), 627637. PubMed ID: 22292850 https://doi.org/10.1111/j.1469-8986.2011.01345.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, M.X., & Ranganath, C. (2007). Reinforcement learning signals predict future decisions. Journal of Neuroscience, 27(2), 371378. PubMed ID: 17215398 https://doi.org/10.1523/JNEUROSCI.4421-06.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coles, M.G.H., Gratton, G., & Fabiani, M. (1990). Event-related brain potentials. In J.T. Cacioppo& L.G. Tassinary (Eds.), Principles of psychophysiology (pp. 413455). Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • Coles, M.G.H., Scheffers, M.K., & Holroyd, C.B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biological Psychology, 56(3), 173189. PubMed ID: 11399349 https://doi.org/10.1016/S0301-0511(01)00076-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compumedics Neuroscan. (2003). Offline analysis of acquired data (SCAN 4.3—Vol. II, EDIT 4.3) [Software manual]. Author.

  • De Pisapia, N., & Braver, T.S. (2006). A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69(10–12), 13221326. https://doi.org/10.1016/j.neucom.2005.12.100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folstein, J.R., & Van Petten, C. (2008). Influences of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(3), 467479. PubMed ID: 17850238 https://doi.org/10.1111/j.1469-8986.2007.00628.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gehring, W.J., & Knight, R.T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3(5), 516520. PubMed ID: 10769394 https://doi.org/10.1038/74899

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, C.B., & Coles, M.G.H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679709. PubMed ID: 12374324 https://doi.org/10.1037/0033-295X.109.4.679

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, C.B., & Krigolson, O.E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913917. PubMed ID: 17640267 https://doi.org/10.1111/j.1469-8986.2007.00561.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, C.B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16(2), 122128. PubMed ID: 22226543 https://doi.org/10.1016/j.tics.2011.12.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kappenman, E.S., & Luck, S.J. (2016). Best practices for event-related potential research in clinical populations. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 110115. https://doi.org/10.1016/j.bpsc.2015.11.007

    • Search Google Scholar
    • Export Citation
  • Kerns, J.G., Cohen, J.D., MacDonald, A.W., III, Cho, R.Y., Stenger, V.A., & Carter, C.S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 10231026. PubMed ID: 14963333 https://doi.org/10.1126/science.1089910

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557577. PubMed ID: 11352145 https://doi.org/10.1017/S0048577201990559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krigolson, O.E. (2018). Event-related brain potentials and the study of reward processing: Methological considerations. International Journal of Psychophysiology, 132, 175183. PubMed ID: 29154804 https://doi.org/10.1016/j.ijpsycho.2017.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larson, M.J., Clayson, P.E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283297. PubMed ID: 24950132 https://doi.org/10.1016/j.ijpsycho.2014.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luck, S.J. (2005). An introduction to the event-related potential technique. MIT Press.

  • Luck, S.J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54, 146157. PubMed ID: 28000253 https://doi.org/10.1111/psyp.12639

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mars, R.B., Piekema, C., Coles, M.G.H., Hulstijn, W., & Toni, I. (2007). On the programming and reprogramming of actions. Cerebral Cortex, 17(12), 29722979. PubMed ID: 17389629 https://doi.org/10.1093/cercor/bhm022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, J.H. (2014). Handbook of biological statistics (3rd ed., pp. 254260). Sparky House Publishing.

  • Miltner, W., Larbig, W., & Braun, C. (1988). Biofeedback of somatosensory event-related potentials: Can individual pain sensations be modified by biofeedback-induced self-control of event-related potentials? Pain, 35(2), 205213. PubMed ID: 3237434 https://doi.org/10.1016/0304-3959(88)90228-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muraskin, J., Sherwin, J., & Sajda, P. (2013). A system for measuring the neural correlates of baseball pitch recognition and its potential use in scouting and player development. Paper presented at the 7th Annual MIT Sloan Sports Analytics Conference, Boston, MA.

    • Search Google Scholar
    • Export Citation
  • Muraskin, J., Sherwin, J., & Sajda, P. (2015). Knowing when not to swing: EEG evidence that enhanced perception-action coupling underlies baseball batter expertise. NeuroImage, 123, 110. PubMed ID: 26299795 https://doi.org/10.1016/j.neuroimage.2015.08.028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamoto, H., & Mori, S. (2008). Effects of stimulus-response compatibility in mediating expert performance in baseball players. Brain Research, 1189, 179188. PubMed ID: 18048011 https://doi.org/10.1016/j.brainres.2007.10.096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamoto, H., & Mori, S. (2012). Experts in fast-ball sports reduce anticipation timing cost by developing inhibitory control. Brain and Cognition, 80(1), 2332. PubMed ID: 22626919 https://doi.org/10.1016/j.bandc.2012.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 21282148. PubMed ID: 17573239 https://doi.org/10.1016/j.clinph.2007.04.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pontifex, M.B., Scudder, M.R., Brown, M.L., O’Leary, K.C., Wu, C.T., Themanson, J.R., & Hillman, C.H. (2010). On the number of trials necessary for stabilization of error-related brain activity across the lifespan. Psychophysiology, 47, 767773. PubMed ID: 20230502 https://doi.org/10.1111/j.1469-8986.2010.00974.x

    • Search Google Scholar
    • Export Citation
  • Rabbitt, P.M.A. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71(2), 264272. PubMed ID: 5948188 https://doi.org/10.1037/h0022853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radlo, S.J., Janelle, C.M., Barba, D.A., & Frehlich, S.G. (2001). Perceptual decision making for baseball pitch recognition: Using P300 latency and amplitude to index attentional processing. Research Quarterly for Exercise and Sport, 72(1), 2231. PubMed ID: 11253316 https://doi.org/10.1080/02701367.2001.10608928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwin, J., Muraskin, J., & Sajda, P. (2012). You can’t think and hit at the same time: Neural correlates of baseball pitch classification. Frontiers in Neuroscience, 6, 111. https://doi.org/10.3389/fnins.2012.00177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themanson, J.R., Ball, A.B., Khatcherian, S.M., & Rosen, P.J. (2014). The effects of social exclusion on the ERN and the cognitive control of action monitoring. Psychophysiology, 51(3), 215225. PubMed ID: 25003166 https://doi.org/10.1111/psyp.12172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themanson, J.R., Bing, N.J., Sheese, B.E., & Pontifex, M.B. (2019). The influence of pitch-by-pitch feedback on neural activity and pitch perception in baseball. Journal of Sport & Exercise Psychology, 41(2), 6572. PubMed ID: 31027460 https://doi.org/10.1123/jsep.2018-0165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Themanson, J.R, Rosen, P.J., Pontifex, M.B., Hillman, C.H., & McAuley, E. (2012). Alterations in error-related brain activity and post-error behavior over time. Brain and Cognition, 80(2), 257265. PubMed ID: 22940400 https://doi.org/10.1016/j.bandc.2012.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Helden, J., Boksem, M.A.S., & Blom, J.H.G. (2010). The importance of failure: Feedback-related negativity predicts motor learning efficiency. Cerebral Cortex, 20(7), 15961603. PubMed ID: 19840974 https://doi.org/10.1093/cercor/bhp224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Veen, V., & Carter, C.S. (2002). The timing of action-monitoring processes in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 14(4), 593602. PubMed ID: 12126500 https://doi.org/10.1162/08989290260045837

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, M.M., & Anderson, J.R. (2012). Learning from experience: Event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience and Biobehavioral Reviews, 36(8), 18701884. PubMed ID: 22683741 https://doi.org/10.1016/j.neubiorev.2012.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41(8), 11221135. PubMed ID: 12667546 https://doi.org/10.1016/S0028-3932(02)00297-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, R., & Alain, C. (2000). Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task. Brain Research, 873(1), 102111. PubMed ID: 10915815 https://doi.org/10.1016/S0006-8993(00)02530-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • West, R., & Bailey, K. (2012). ERP correlates of dual mechanisms of control in the counting Stroop task. Psychophysiology, 49(10), 13091318. PubMed ID: 22958264 https://doi.org/10.1111/j.1469-8986.2012.01464.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeung, N., Botvinich, M.M., & Cohen, J.D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931959. PubMed ID: 15482068 https://doi.org/10.1037/0033-295X.111.4.931

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4458 308 8
Full Text Views 224 87 0
PDF Downloads 139 29 0