Analogous Forecasting for Predicting Sport Innovation Diffusion: From Business Analytics to Natural Language Processing

in Journal of Sport Management

Click name to view affiliation

Liz Wanless Ohio University, Athens, OH, USA

Search for other papers by Liz Wanless in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6896-2076 *
and
Michael L. Naraine Brock University, St Catharines, ON, Canada

Search for other papers by Michael L. Naraine in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9132-1269
Restricted access

The purpose of this study was to analyze the diffusion of one sport innovation to forecast a second. Contextualized within the diffusion of innovations theory, this study investigated cumulative business analytics diffusion as an analog for cumulative natural language processing (NLP) diffusion in professional sport. A total of 89 teams of the 123 teams in the Big Four North American men’s professional sport leagues contributed: 21 from the National Football League, 23 from the National Basketball Association, 22 from Major League Baseball, and 23 from the National Hockey League. Utilizing an analogous forecasting approach, a discrete derivation of the Bass model was applied to cumulative BA adoption data. Parameters were then extended to predict cumulative NLP adoption. Resulting BA-estimated parameters (p = .0072, q = .3644) determined a close fit to NLP diffusion (root mean square error of approximation = 3.51, mean absolute error = 2.98), thereby validating BA to predict the takeoff and full adoption of NLP. This study illuminates an ongoing and isomorphic process for diffusion of innovations in the professional sport social system and generates a novel application of diffusion of innovations theory to the sport industry.

  • Collapse
  • Expand
  • Armstrong, S. (2001). Principles of forecasting: A handbook for researchers and practitioners. Kluwer Academic Publisher.

  • Baardman, L., Levin, I., Perakis, G., & Singhi, D. (2018). Leveraging comparables for new product sales forecasting. Production & Operations Management, 27(12), 23402343. http://dx.doi.org/10.2139/ssrn.3086237

    • Search Google Scholar
    • Export Citation
  • Bale, J. (1984). International sports history as innovation diffusion. Canadian Journal of History of Sport, 15, 3863.

  • Barnhill, C.R., & Smith, N.L. (2019). Psychological contract fulfilment and innovative work behaviours of employees in sport-based SBEs: The mediating role of organizational citizenship. International Journal of Sport Management and Marketing, 19, 106128. https://doi.org/10.1504/IJSMM.2019.097020

    • Search Google Scholar
    • Export Citation
  • Bass, F.M. (1969). A new product growth model for consumer durables. Management Science, 15, 215227. https://doi.org/10.1287/mnsc.15.5.215

    • Search Google Scholar
    • Export Citation
  • Bass, F.M., Krishnan, T., & Jain, D.C. (1994). Why the Bass model fits without decision variables. Marketing Science, 13, 203223. https://doi.org/10.1287/mksc.13.3.203

    • Search Google Scholar
    • Export Citation
  • Berger, J., Humphreys, A., Schweidel, D.A. (2019). Uniting the tribes: Using text for marketing insight. Journal of Marketing, 84(1), 125.

    • Search Google Scholar
    • Export Citation
  • Bouchet, A., Troilo, M., Urban, T.L., Mondello, M., & Sutton, W. (2020). Business analytics, revenue management and sport: Evidence from the field. International Journal of Revenue Management, 11, 277296.

    • Search Google Scholar
    • Export Citation
  • Bukstein, S. (2017). Evolution and impact of business analytics in sport. In C.K. Harrison& S. Bukstein (Eds.), Sport business analytics: Using data to increase revenue and improve operational efficiency (pp. 122). CRC Press.

    • Search Google Scholar
    • Export Citation
  • Caza, A. (2000). Context receptivity: Innovation in an amateur sport organization. Journal of Sport Management, 14, 227242. https://doi.org/10.1123/jsm.14.3.227

    • Search Google Scholar
    • Export Citation
  • Chandrasekaran, D.& Tellis, G.J. (2007). A critical review of marketing research on diffusion of new products. Review of Marketing Research, 3, 3980. https://doi.org/10.1108/S1548-6435(2007)0000003006

    • Search Google Scholar
    • Export Citation
  • Chelladurai, P., & Kim, A.C.H. (2023). Human resource management in sport and recreation (4th ed.). Human Kinetics.

  • Compagni, A., Mele, V., & Ravasi, D. (2014). How early implementations influence later adoptions of innovation: Social positioning and skill reproduction in the diffusion of robotic surgery. Academy of Management Journal, 58, 242278. https://doi.org/10.5465/amj.2011.1184

    • Search Google Scholar
    • Export Citation
  • Dearing, J.W. (2009). Applying diffusion of innovation theory to intervention development. Research on Social Work Practice, 19, 503518. https://doi.org/10.1177/2F1049731509335569

    • Search Google Scholar
    • Export Citation
  • Dwyer, B., Drayer, J., & Shapiro, S.L. (2019). To play or not to play? An analysis of dispositions, gambling, and daily fantasy sport. Journal of Sport Management, 33, 174188. https://doi.org/10.1123/jsm.2018-0115

    • Search Google Scholar
    • Export Citation
  • Dyussekeneva, K. (2011). New product sales forecasting: The relative accuracy of statistical, judgmental, and combination forecasts [Unpublished doctoral dissertation], University of Bath.

    • Search Google Scholar
    • Export Citation
  • Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009). Effective forecasting and judgmental adjustments: An empirical evaluation and strategies for improvement in supply-chain planning. International Journal of Forecasting, 25, 323. https://doi.org/10.1016/j.ijforecast.2008.11.010

    • Search Google Scholar
    • Export Citation
  • Fried, G., & Mumcu, C. (2017). Sport analytics: A data-driven approach to sport business and management. Routledge Taylor & Francis Group.

    • Search Google Scholar
    • Export Citation
  • Harris, S.J., Metzger, M.L., & Duening, T.N. (2021). Innovation in national governing bodies of sport: Investigating dynamic capabilities that drive growth. European Sport Management Quarterly, 21, 94115. https://doi.org/10.1080/16184742.2020.1725090

    • Search Google Scholar
    • Export Citation
  • Hoeber, L., Doherty, A., Hoeber, O., & Wolfe, R. (2015). The nature of innovation in community sport organizations. European Sport Management Quarterly, 15, 518534. https://doi.org/10.1080/16184742.2015.1085070

    • Search Google Scholar
    • Export Citation
  • Hoeber, L., & Hoeber, O. (2012). Determinants of an innovation process: A case study of technological innovation in a community sport organization. Journal of Sport Management, 26, 213223. https://doi.org/10.1123/jsm.26.3.213

    • Search Google Scholar
    • Export Citation
  • Hong, S., Magnusen, M.J., & Coates, D. (2019). Collaborative innovation in professional sport stadium construction: An event history analysis. Journal of Applied Sport Management, 11(4), 2944. https://doi.org/10.18666/JASM-2019-V11-I4-10160

    • Search Google Scholar
    • Export Citation
  • Hsiao, J.P-H., Jaw, C., & Huan, T-C. (2009). Information diffusion and new product consumption: A bass model application to tourism facility management. Journal of Business Research, 62, 690697. https://doi.org/10.1016/j.jbusres.2008.08.002

    • Search Google Scholar
    • Export Citation
  • Jang, W., Byon, K.K., & Yim, B.H. (2020). Sportscape, emotion, and behavioral intention: A case of the big four US-based major sport leagues. European Sport Management Quarterly, 20, 321343. https://doi.org/10.1080/16184742.2019.1607521

    • Search Google Scholar
    • Export Citation
  • Kahn, K. (2006). New product forecasting: An applied approach. M.E. Sharpe Inc.

  • Kellison, T.B., & Hong, S.H. (2015). The adoption and diffusion of pro-environmental stadium design. European Sport Management Quarterly, 15, 249269. https://doi.org/10.1080/16184742.2014.995690

    • Search Google Scholar
    • Export Citation
  • Kim, M., Oja, B.D., & Anagnostopoulos, C. (2021). An expanded psychological capital (A-HERO) construct for creativity: Building a competitive advantage for sport organisations. European Sport Management Quarterly. https://doi.org/10.1080/16184742.2021.1922480

    • Search Google Scholar
    • Export Citation
  • Kim, T., Hong, J., & Koo, H. (2013). Forecasting diffusion of innovation technology at pre-launch: A survey based method. Industrial Management & Data Systems, 113, 800816. https://doi.org/10.1108/IMDS-11-2012-0414

    • Search Google Scholar
    • Export Citation
  • Kreng, V.B., & Wang, B.J. (2013). An innovation diffusion of successive generations by system dynamics—An empirical study of Nike Golf Company. Technological Forecasting and Social Change, 80(1), 7787. https://doi.org/10.1016/j.techfore.2012.08.002

    • Search Google Scholar
    • Export Citation
  • Lee, H., Smith, K.G., & Grimm, C.M. (2003). The effect of new product radicality and scope on the extent and speed of innovation diffusion. Journal of Management, 29, 753768. https://doi.org/10.1016/2FS0149-2063_03_00034-5

    • Search Google Scholar
    • Export Citation
  • Mahajan, V., Muller, E., & Bass, F.M. (1995). Diffusion of new products: Empirical generalizations and managerial uses. Marketing Science, 14, G79G88. https://doi.org/10.1287/mksc.14.3.G79

    • Search Google Scholar
    • Export Citation
  • Min, S., So, K.K.F., & Jeong, M. (2018). Consumer adoption of the Uber mobile application: Insights from diffusion of innovation theory and technology acceptance model. Journal of Travel & Tourism Marketing, 36, 770783. https://doi.org/10.1080/10548408.2018.1507866

    • Search Google Scholar
    • Export Citation
  • Naraine, M.L., & Parent, M.M. (2016). Illuminating centralized users in the social media ego network of two national sport organizations. Journal of Sport Management, 30, 689701. https://doi.org/10.1123/jsm.2016-0067

    • Search Google Scholar
    • Export Citation
  • Naraine, M.L., & Wanless, L. (2020). Going all in on AI: Examining the value proposition of and integration challenges with one branch of artificial intelligence in sport management. Sport Innovation Journal, 1, 4961. https://doi.org/10.18060/23898

    • Search Google Scholar
    • Export Citation
  • Newell, S., & Swan, J. (1995). The diffusion of innovations in sport organizations: An evaluative framework. Journal of Sport Management, 9, 317337. https://doi.org/10.1123/jsm.9.3.317

    • Search Google Scholar
    • Export Citation
  • Parent, M.M., Naraine, M.L., & Hoye, R. (2018). A new era for governance structures and processes in Canadian national sport organizations. Journal of Sport Management, 32, 555566. https://doi.org/10.1123/jsm.2018-0037

    • Search Google Scholar
    • Export Citation
  • Pizzo, A.D., Baker, B.J., Jones, G.J., & Funk, D.C. (2020). Sport experience design: Wearable fitness technology in the health and fitness industry. Journal of Sport Management, 35, 130143. https://doi.org/10.1123/jsm.2020-0150

    • Search Google Scholar
    • Export Citation
  • Ratcliff, R., & Doshi, K. (2016). Using the Bass model to analyze the diffusion of innovations at the Base of the Pyramid. Business and Society, 55, 271298. https://doi.org/10.1177/2F0007650313479529

    • Search Google Scholar
    • Export Citation
  • Rogers, E.M. (1962, 2003). Diffusion of innovations. Free Press of Glencoe.

  • Satoh, D. (2001). A discrete Bass model and its parameter estimation. Journal of the Operations Research, 44, 118. https://doi.org/10.15807/jorsj.44.1

    • Search Google Scholar
    • Export Citation
  • Schmittlein, D.C., & Mahajan, V. (1982). Maximum likelihood estimation for an innovation diffusion model of new product acceptance. Marketing Science, 1, 5778. https://doi.org/10.1287/mksc.1.1.57

    • Search Google Scholar
    • Export Citation
  • Seifried, C., Katz, M., & Tutka, P. (2017). A conceptual model on the process of innovation diffusion through a historical review of the United States armed forces and their bowl games. Sport Management Review, 20, 379394. https://doi.org/10.1016/j.smr.2016.10.009

    • Search Google Scholar
    • Export Citation
  • Shilbury, D., & Ferkins, L. (Eds.). (2020). Routledge handbook of sport governance. Routledge.

  • Slack, T., & Thurston, A. (2021). Organizational change in sport. In T. Slack, T. Byers, & A. Thurston (Eds.), Understanding sport organizations: Applications for sport managers (pp. 315338). Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Smith, N.L., & Green, B.C. (2020). Examining the factors influencing organizational creativity in professional sport organizations. Sport Management Review, 23, 9921004. https://doi.org/10.1016/j.smr.2020.02.003

    • Search Google Scholar
    • Export Citation
  • Sultan, F., Farley, J.U., & Lehmann, D.R. (1990). A meta-analysis of applications of diffusion models. Journal of Marketing Research, 27, 7077. https://doi.org/10.1177/2F002224379002700107

    • Search Google Scholar
    • Export Citation
  • Thomas, R.J. (1985). Estimating market growth for new products: An analogical diffusion model approach. Journal of Product Innovation Management, 2, 4555. https://doi.org/10.1016/0737-6782(85)90015-3

    • Search Google Scholar
    • Export Citation
  • Troilo, M., Bouchet, B., Urban, T.L., & Sutton, W.A. (2016). Perception, reality, and the adoption of business analytics: Evidence from North American professional sport organizations. Omega, 59, 7283. https://doi.org/10.1016/j.omega.2015.05.011

    • Search Google Scholar
    • Export Citation
  • Tutka, P., & Seifried, C. (2020). An innovation diffusion ideal-type on the history of American college football stadia. Journal of Issues in Intercollegiate Athletics, 13, 312336.

    • Search Google Scholar
    • Export Citation
  • Wanless, L.A., & Naraine, M.L. (2021). Sport analytics education for future executives, managers, and nontechnical personnel. Sport Management Education Journal, 15, 3440. https://doi.org/10.1123/smej.2019-0070

    • Search Google Scholar
    • Export Citation
  • Wanless, L., Seifried, C., Bouchet, A., Valeant, A., & Naraine, M.L. (2022). The diffusion of natural language processing in professional sport. Sport Management Review, 25(3), 522545.

    • Search Google Scholar
    • Export Citation
  • Winand, M., & Anagnostopoulos, C. (2017). Get ready to innovate! Staff’s disposition to implement service innovation in non-profit sport organisations. International Journal of Sport Policy and Politics, 9, 579595. https://doi.org/10.1080/19406940.2017.1308418

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 849 849 131
Full Text Views 144 144 13
PDF Downloads 176 176 16