Comparison of Biomechanical Factors between the Kicking and Stance Limbs

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Objective:

T o determine differences between contralateral limbs’ strength, proprio-ception, and kinetic and knee-kinematic variables during single-limb landing.

Setting:

Laboratory.

Subjects:

30.

Measurements:

Hip, knee, and foot isokinetic peak torques; anterior/posterior (AP) and medial/lateral (ML) sway displacements during a balance task; and stabilization times, vertical ground-reaction force (VGRF), time to peak VGRF, and knee-flexion range of motion (ROM) from initial foot contact to peak VGRF during single-limb landing.

Results:

The kicking limb had significantly greater values for knee-extension (P = .008) and -flexion (P = .047) peak torques, AP sway displacement (P = .010), knee-flexion ROM from initial foot contact to peak VGRF (P < .001), and time to peak VGRF (P = .004). No other dependent measures were significantly different between limbs (P > .05).

Conclusion:

The kicking limb had superior thigh strength, better proprioception, and greater knee-flexion ROM than the stance limb.

Ross and Schneider are with the Dept of Exercise Science at Virginia Commonwealth University, Richmond, VA 23284. Guskiewicz and Prentice are with the Dept of Exercise and Sport Science at the University of North Carolina, Chapel Hill, NC 27599-8700. Yu is with the Dept of Allied Health at the University of North Carolina.