Numerical Simulations to Assess Different Rehabilitation Strategies after ACL Rupture in a Skier

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Objective:

In this study a numerical model of a skier was developed to investigate the effect of different rehabilitation strategies after anterior cruciate ligament (ACL) rupture.

Methods:

A computer model using a combined finite-element and multibody approach was established. The model includes a detailed representation of the knee structures, as well as all major leg muscles. Using this model, different strategies after ACL rupture were analyzed.

Results:

The benefit of muscle training to compensate for a loss of the ACL was shown. The results indicate that an increase of 10% of the physiological cross-sectional area has a positive effect without subjecting other knee structures to critical loads. Simulating the use of a hamstring graft indicated increasing knee loads. A patellar-tendon graft resulted in an increase of the stress on the lateral collateral ligament.

Conclusion:

Muscle training of both extensors and flexors is beneficial in medical rehabilitation of ACL-deficient and ACL-reconstructed knees.

The authors are with the Institute for Biomedical Engineering, University and ETH Zurich, Switzerland.

All Time Past Year Past 30 Days
Abstract Views 28 28 2
Full Text Views 0 0 0
PDF Downloads 0 0 0