The Effect of 3 Foot Pads on Plantar Pressure of Pes Planus Foot Type

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context:

Many styles of foot pads are commonly applied to reduce immediate pain and pressure under the foot.

Objective:

To examine the effect of 3 different foot pads on peak plantar pressure (PPP) and mean plantar pressure (MPP) under the first metatarsophalangeal joint (MTPJ) during slow running.

Design:

A 4 (pad) × 4 (mask) repeated-measures design.

Setting:

University athletic training clinic and fitness facility.

Participants:

20 physically active participants, 12 men (19.7 ± 1.3 y, 181.5 ± 6.3 cm, 83.6 ± 12.3 kg) and 8 women (20.8 ± 1.5 y, 172.7 ± 11.2 cm, 69.9 ± 14.2 kg) with navicular drop greater than or equal to 10 mm, no history of surgery to the lower extremity, and no history of pain or injury to the first MTPJ in the past 6 months.

Interventions:

PPP and MPP were evaluated under 4 areas of the foot: the rear foot, lateral forefoot, medial forefoot, and first MTPJ. Four pad conditions (no pad, metatarsal dome, U-shaped pad, and donut-shaped pad) were evaluated during slow running. All measurements were taken on a standardized treadmill using the Pedar in-shoe pressure-measurement system.

Main Outcome Measures:

PPP and MPP in 4 designated foot masks during slow running.

Results:

The metatarsal dome produced significant decreases in MPP (163.07 ± 49.46) and PPP (228.73 ± 63.41) when compared with no pad (P < .001). The U-shaped pad significantly decreased MPP (168.68 ± 50.26) when compared with no pad (P < .001). The donut-shaped pad increased PPP compared with no pad (P < .001).

Conclusions:

The metatarsal dome was most effective in reducing both peak and mean plantar pressure. Other factors such as pad comfort, type of activity, and material availability must also be considered. Further research should be conducted on the applicability to other foot types and symptomatic subjects.

Nordsiden is an assistant athletic trainer, Christopher Newport University, Newport News, VA. Van Lunen and Cortes are with the Dept of Human Movement Science, and Walker, the Dept of Physical Therapy, Old Dominion University, Norfolk, VA. Pasquale is with Novel Electronics, Inc. Onate is with the School of Allied Medical Professions, The Ohio State University, Columbus, OH.