The Potential of Multiple Synovial-Fluid Protein-Concentration Analyses in the Assessment of Knee Osteoarthritis

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $74.00

1 year subscription

USD $99.00

Student 2 year subscription

USD $141.00

2 year subscription

USD $185.00

Context:

Joint trauma is a risk factor for osteoarthritis (OA), which is becoming an increasingly important orthopedic concern for athletes and nonathletes alike. For advances in OA prevention, diagnosis, and treatment to occur, a greater understanding of the biochemical environment of the affected joint is needed.

Objective:

To demonstrate the potential of a biochemical technique to enhance our understanding of and diagnostic capabilities for osteoarthritis.

Design:

Cross-sectional.

Setting:

Outpatient orthopedic practice.

Participants:

8 subjects: 4 OA-knee participants (65 ± 6 y of age) and 4 normal-knee participants (54 ± 10 y) with no history of knee OA based on bilateral standing radiographs.

Intervention:

The independent variable was group (OA knee, normal knee).

Main Outcome Measures:

16 knee synovial-protein concentrations categorized as follows: 4 as pro-inflammatory, or catabolic, cytokines; 5 as anti-inflammatory, or protective, cytokines; 3 as catabolic enzymes; 2 as tissue inhibitors of metalloproteinases [TIMPs]; and 2 as adipokines.

Results:

Two anti-inflammatory cytokines (interleukin [IL]-13 and osteoprotegerin) and a pro-inflammatory cytokine (IL-1β) were significantly lower in the OA knees. Two catabolic enzymes (matrix metalloproteinase [MMP]-2 and MMP-3) were significantly elevated in OA knees. TIMP-2, an inhibitor of MMPs, was significantly elevated in OA knees.

Conclusions:

Six of the 16 synovial-fluid proteins were significantly different between OA knees and normal knees in this study. Future research using a similar multiplex ELISA approach or other proteomic techniques may enable researchers and clinicians to develop more accurate biochemical profiles of synovial fluid to help diagnose OA, identify subsets of OA or individual characteristics, guide clinical decisions, and identify patients at risk for OA after knee injury.

Driban is with the Division of Rheumatology, Tufts Medical Center, Boston, MA. Balasubramanian is with the Dept of Orthopaedic Surgery, and Sitler, the Dept of Kinesiology, Temple University, Philadelphia, PA. Amin and Barbe are with the Dept of Anatomy and Cell Biology, and Ziskin, the Dept of Radiology, Temple University School of Medicine, Philadelphia, PA.