Effects of Exercise on Lower Extremity Muscle Function After Anterior Cruciate Ligament Reconstruction

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00


Persistent quadriceps weakness due to arthrogenic muscle inhibition (AMI) has been reported after anterior cruciate ligament (ACL) reconstruction. Fatiguing exercise has been shown to alter lower extremity muscle function and gait mechanics, which may be related to injury risk. The effects of exercise on lower extremity function in the presence of AMI are not currently understood. The purpose of this study was to compare the effect of 30 min of exercise on quadriceps muscle function and soleus motoneuron-pool excitability in ACL-reconstructed participants and healthy controls.


Twenty-six (13 women, 13 men) healthy and 26 (13 women, 13 men) ACL-reconstructed recreationally active volunteers were recruited for a case-control laboratory study. All participants completed 30 min of continuous exercise including alternating cycles of inclined-treadmill walking and bouts of squats and step-ups. Knee-extension torque, quadriceps central activation ratio (CAR), soleus H:M ratio, and soleus V:M ratio were measured before and after 30 min of exercise.


There was a significant group × time interaction for knee-extension torque (P = .002), quadriceps CAR (P = .03), and soleus V:M ratio (P = .03). The effect of exercise was smaller for the ACL-R group than for matched controls for knee-extension torque (ACL-R: %Δ = −4.2 [−8.7, 0.3]; healthy: %Δ = −14.2 [−18.2, −10.2]), quadriceps CAR (ACL-R: %Δ = −5.1 [−8.0, −2.1]; healthy: %Δ = −10.0 [−13.3, −6.7]), and soleus V:M ratio (ACL-R: %Δ = 37.6 [2.1, 73.0]; healthy: %Δ = −24.9 [−38.6, −11.3]).


Declines in quadriceps and soleus volitional muscle function were of lower magnitude in ACL-R subjects than in healthy matched controls. This response suggests an adaptation experienced by patients with quadriceps AMI that may act to maintain lower extremity function during prolonged exercise.

The authors are with the Dept of Human Services, University of Virginia, Charlottesville, VA.