The Progression of Isokinetic Knee Strength After Matrix-Induced Autologous Chondrocyte Implantation: Implications for Rehabilitation and Return to Activity

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context:

Matrix-induced autologous chondrocyte implantation (MACI) is an established technique for the repair of knee chondral defects. Despite the reported clinical improvement in knee pain and symptoms, little is known on the recovery of knee strength and its return to an appropriate level compared with the unaffected limb.

Objective:

To investigate the progression of isokinetic knee strength and limb symmetry after MACI.

Design:

Prospective cohort.

Setting:

Private functional rehabilitation facility.

Patients:

58 patients treated with MACI for full-thickness cartilage defects to the femoral condyles.

Intervention:

MACI and a standardized rehabilitation protocol.

Main Outcome Measures:

Preoperatively and at 1, 2, and 5 y postsurgery, patients underwent a 3-repetition-maximum straight-leg raise test, as well as assessment of isokinetic knee-flexor and -extensor torque and hamstring:quadriceps (H:Q) ratios. Correlation analysis investigated the association between strength and pain, demographics, defect, and surgery characteristics. Linear-regression analysis estimated differences in strength measures between the operated and nonoperated limbs, as well as Limb Symmetry Indexes (LSI) over time.

Results:

Peak knee-extension torque improved significantly over time for both limbs but was significantly lower on the operated limb preoperatively and at 1, 2, and 5 y. Mean LSIs of 77.0%, 83.0%, and 86.5% were observed at 1, 2, and 5 y, respectively, while 53.4–72.4% of patients demonstrated an LSI ≤ 90% across the postoperative timeline. Peak knee-flexion torque was significantly lower on the operated limb preoperatively and at 1 year. H:Q ratios were significantly higher on the operated limb at all time points.

Conclusions:

While peak knee-flexion and hip-flexor strength were within normal limits, the majority of patients in this study still demonstrated an LSI for peak knee-extensor strength ≤ 90%, even at 5 y. It is unknown how this prolonged knee-extensor deficit may affect long-term graft outcome and risk of reinjury after return to activity.

Ebert, Edwards, and Ackland are with the School of Sport Science, Exercise and Health, University of Western Australia, Crawley, Perth, WA, Australia. Smith is with the School of Physiotherapy and Curtin Health Innovation Research Inst, Curtin University, Bentley, Perth, WA, Australia. Address author correspondence to Jay Ebert at jay.ebert@uwa.edu.au.