Can Temperate-Water Immersion Effectively Reduce Rectal Temperature in Exertional Heat Stroke? A Critically Appraised Topic

Click name to view affiliation

Tyler T. Truxton
Search for other papers by Tyler T. Truxton in
Current site
Google Scholar
Kevin C. Miller
Search for other papers by Kevin C. Miller in
Current site
Google Scholar
Restricted access

Clinical Scenario:

Exertional heat stroke (EHS) is a medical emergency which, if left untreated, can result in death. The standard of care for EHS patients includes confirmation of hyperthermia via rectal temperature (Trec) and then immediate cold-water immersion (CWI). While CWI is the fastest way to reduce Trec, it may be difficult to lower and maintain water bath temperature in the recommended ranges (1.7°C–15°C [35°F–59°F]) because of limited access to ice and/or the bath being exposed to high ambient temperatures for long periods of time. Determining if Trec cooling rates are acceptable (ie, >0.08°C/min) when significantly hyperthermic humans are immersed in temperate water (ie, ≥20°C [68°F]) has applications for how EHS patients are treated in the field.

Clinical Question:

Are Trec cooling rates acceptable (≥0.08°C/min) when significantly hyperthermic humans are immersed in temperate water?

Summary of Findings:

Trec cooling rates of hyperthermic humans immersed in temperate water (≥20°C [68°F]) ranged from 0.06°C/min to 0.19°C/min. The average Trec cooling rate for all examined studies was 0.11±0.06°C/min.

Clinical Bottom Line:

Temperature water immersion (TWI) provides acceptable (ie, >0.08°C/min) Trec cooling rates for hyperthermic humans post-exercise. However, CWI cooling rates are higher and should be used if feasible (eg, access to ice, shaded treatment areas).

Strength of Recommendation:

The majority of evidence (eg, Level 2 studies with PEDro scores ≥5) suggests TWI provides acceptable, though not ideal, Trec cooling. If possible, CWI should be used instead of TWI in EHS scenarios.

The authors are with the School of Rehabilitation and Medical Sciences, Central Michigan University, Mount Pleasant, MI.

Miller ( is corresponding author.
  • Collapse
  • Expand
All Time Past Year Past 30 Days
Abstract Views 1861 195 21
Full Text Views 52 11 0
PDF Downloads 80 16 0