The Role of Gender in Neuropsychological Assessment in Healthy Adolescents

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Research in college athletes has revealed significant gender differences in areas of verbal memory, visual memory, and reaction time. Additionally, research has focused on differences in neuropsychological components and gender in college populations; however, such differences in gender have not been documented in healthy adolescent populations. Purpose: To identify potential differences between males and females using different components of a common computerized neuropsychological test. Methods: A computerized neuropsychological test battery (ImPACT®) was administered to 662 high-school age adolescent athletes (male: n = 451 female: n = 262). Differences between genders were calculated using a 1-way ANOVA. All statistical analyses were conducted using SPSS 23.0. Significance levels were set a priori at P < .05. Results: A 1-way ANOVA revealed statistically significant differences between males and females for composite reaction time (F1,660 = 10.68, P = .001) and total symptom score (F1,660 = 81.20, P < .001). However, no statistically significant differences were found between males and females in composite verbal memory, visual memory, visual motor, or impulse control (P > .05). Conclusions: Significant differences between males and females were discovered for composite reaction time and total symptom scores, with females reporting more symptoms and slower reaction times at a baseline assessment. Increased symptom reporting by females may be attributed to both hormonal differences and increased honesty. Quicker reaction times in males may support theories that repetition of activities and quicker muscle contraction are gender dependent. However, additional research is necessary to understand gender differences in adolescent athletes during periods of cognitive and physical maturation.

The authors are with the School of Health and Kinesiology, Georgia Southern University, Statesboro, GA.

Mormile (meganevelyne@gmail.com) is corresponding author.
  • 1.

    Guskiewicz K, Weaver NL, Padua DA, Garrett WE Jr. Epidemiology of concussion in collegiate and high school football players. Am J Sports Med. 2000;28(5):643650. PubMed doi:10.1177/03635465000280050401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    The National Federation of State High School Association. 2014–2015 High school athletics participation survey. 2015. http://www.nfhs.org/ParticipationStatistics/PDF/2014-15_Participation_Survey_Results.pdf. Accessed July 18, 2016.

    • Export Citation
  • 3.

    Irick E. NCAA sports sponsorship and participation research. 2015. http://www.ncaa.org/about/resources/research/sports-sponsorship-and-participation-research. Accessed July 18, 2016.

    • Export Citation
  • 4.

    Bureau of Labor Statistics, U.S Department of Labor. Occupational outlook handbook, 2016–2017 edition, athletes and sports competitors. 2015. http://www.bls.gov/ooh/entertainment-and-sports/athletes-and-sports-competitors.htm. Accessed July 16, 2016.

    • Export Citation
  • 5.

    Marar M, McIlvain NM, Fields SK, Comstock RD. Epidemiology of concussions among united states high school athletes in 20 sports. Am J Sports Med. 2012;40(4):747755. PubMed doi:10.1177/0363546511435626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kroshus E, Garnett B, Hawrilenko M, Baugh CM, Calzo JP. Concussion under-reporting and pressure from coaches, teammates, fans, and parents. Soc Sci Med. 2015;134:6675. PubMed doi:10.1016/j.socscimed.2015.04.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    McCrea M, Hammeke T, Olsen G, Leo P, Guskiewicz K. Unreported concussion in high school football players: implications for prevention. Clin J Sports Med. 2004;14(1):1317. PubMed doi:10.1097/00042752-200401000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Register-Mihalik J, Guskiewicz KM, Mihalik JP, Schmidt JD, Kerr ZY, McCrea MA. Reliable change, sensitivity, and specificity of a multidimensional concussion assessment battery: implications for caution in clinical practice. J Head Trauma Rehabil. 2013;28(4):274283. PubMed doi:10.1097/HTR.0b013e3182585d37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Halstead M, Walter K. Sport related concussion in children and adolescents. Pediatrics. 2010;126(3):597615. PubMed doi:10.1542/peds.2010-2005

  • 10.

    Hunt T, Asplund C. Concussion assessment and management. Clin Sports Med. 2010;29:517. PubMed doi:10.1016/j.csm.2009.09.002

  • 11.

    Broglio SP, Cantu RC, Gioia GA, et al. National athletic trainers’ association position statement: management of sport concussion. J Athl Train. 2014;49(2):245265. PubMed doi:10.4085/1062-6050-49.1.07

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Iverson GL, Lovell MR, Collins MW. Validity of ImPACT for measuring processing speed following sports-related concussion. J Clin Exp Neuropsychol. 2005;27(6):683689. PubMed doi:10.1081/13803390490918435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Covassin T, Moran R, Elbin RJ. Sex differences in reported concussion injury rates and time loss from participation: an update of the national collegiate athletic association injury surveillance program from 2004–2005 through 2008–2009. J Athl Train. 2016;51(3):189194. PubMed doi:10.4085/1062-6050-51.3.05

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Frommer LJ, Gurka KK, Cross KM, Ingersoll CD, Comstock RD, Saliba SA. Sex differences in concussion symptoms of high school athletes. J Athl Train. 2011;46(1):7684. PubMed doi:10.4085/1062-6050-46.1.76

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Broshek DK, Kaushik T, Freeman JR, Erlanger D, Webbe F, Barth JT. Sex differences in outcome following sports-related concussion. J Neurosurg. 2005;102(5):856863. PubMed doi:10.3171/jns.2005.102.5.0856

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dick RW. Is there a gender difference in concussion incidence and outcomes? Br J Sports Med. 2009;43:4650. PubMed doi:10.1136/bjsm.2009.058172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Tierney RT, Higgins M, Caswell SV, et al. Sex differences in head acceleration during heading while wearing soccer headgear. J Athl Train. 2008;43(6):578584. PubMed doi:10.4085/1062-6050-43.6.578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Stein DG, Hoffman SW. Estrogen and progesterone as neuroprotective agents in the treatment of acute brain injuries. Pediatr Rehabil. 2003;6(1):1322. PubMed doi:10.1080/1363849031000095279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wunderle K, Hoeger KM, Wasserman E, Bazarian JJ. Menstrual phase as predictor of outcome after mild traumatic brain injury in women. J Head Trauma Rehabil. 2014;29(5):E1E8. PubMed doi:10.1097/HTR.0000000000000006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Agha A, Thompson CJ. Anterior pituitary dysfunction following traumatic brain injury (TBI). Clin Endocrinol (Oxf). 2006;64(5):481488. PubMed doi:10.1111/j.1365-2265.2006.02517.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Newcombe N, Bandura MM, Taylor DG. Sex differences in spatial ability and spatial activities. Sex Roles. 1983;9(3):377386. doi:10.1007/BF00289672

  • 22.

    Covassin T, Swanik CB, Sachs M, et al. Sex differences in baseline neuropsychological function and concussion symptoms of collegiate athletes. Br J Sports Med. 2006;40(11):923927. PubMed doi:10.1136/bjsm.2006.029496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Shields S. The variability hypothesis: history of a biological model of sex differences in intelligence. J Women Cult Soc. 1982;7:769797. doi:10.1086/493921

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hyde J. How large are cognitive gender differences? A meta-analysis using ω2 and d. Am Psychol. 1981;36(8):892901. doi:10.1037/0003-066X.36.8.892

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Weiss E, Kemmler G, Deisenhammer E, Margarete D. Sex differences in cognitive functions. Pers Individ Dif. 2008;35(4):863875. doi:10.1016/S0191-8869(02)00288-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Borowski LA, Yard EE, Fields SK, Comstock RD. The epidemiology of US high school basketball injuries, 2005–2007. Am J Sports Med. 2008;36(12):23282335. PubMed doi:10.1177/0363546508322893

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Brown DA, Elsass JA, Miller AJ, Reed LE, Reneker JC. Differences in symptom reporting between males and females at baseline and after a sports-related concussion: a systematic review and meta-analysis. Sports Med. 2015;45(7):10271040. PubMed doi:10.1007/s40279-015-0335-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Maerlender A, Flashman L, Kessler A. Discriminant construct validity of ImPACT™: a companion study. Clin Neuropsychol. 2013;27(2):290299. doi:10.1080/13854046.2012.744098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Schatz P, Pardini JE, Lovell MR, Collins MW, Podell K. Sensitivity and specificity of the ImPACT test battery for concussion in athletes. Arch Clin Neuropsychol. 2006;21:9199. PubMed doi:10.1016/j.acn.2005.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schatz P. Long-term test-retest reliability of baseline cognitive assessments using ImPACT. Am J Sports Med. 2010;38(1):4753. PubMed doi:10.1177/0363546509343805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Erdal K. Neuropsychological testing for sports-related concussion: how athletes can sandbag their baseline testing without detection. Arch Clin Neuropsychol. 2012;27(5):473479. PubMed doi:10.1093/arclin/acs050

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jain A, Bansal R, Kumar A, Singh KD. A comparative study of visual and auditory reaction times on the basis of gender and physical activity levels of medical first year students. Int J Appl Basic Med Res. 2015;5(2):124127. doi:10.4103/2229-516X.157168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Dykiert D. Determinants and Correlates of Intra-Individual Variability in Reaction Time [dissertation]. Edinburgh, Scotland: The University of Edinburgh; 2011 .

    • Search Google Scholar
    • Export Citation
  • 34.

    Blakemore S, Burnett S, Dahl RE. The role of puberty in the developing adolescent brain. Hum Brain Mapp. 2010;31(6):926933. PubMed doi:10.1002/hbm.21052

  • 35.

    Kretzschmar J, Toole T. Gender differences in motor performance in early childhood and later adulthood. Women Sport Phys Act. 1993;2(1):4171. doi:10.1123/wspaj.2.1.41

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Maki PM, Rich JB, Rosenbaum RS. Implicit memory varies across the menstrual cycle: estrogen effects in young women. Neuropsychologia. 2002;40:518529. PubMed doi:10.1016/S0028-3932(01)00126-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 213 201 12
Full Text Views 14 14 0
PDF Downloads 4 4 0