Effects of a Short-Term Conditioning Intervention on Knee Flexor Sensorimotor and Neuromuscular Performance in Men

in Journal of Sport Rehabilitation
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: Long-term conditioning programs for enhanced sensorimotor performance have been causally linked to reduced risk of serious ligamentous injury. However, the efficacy of brief, short-term conditioning interventions has not been established. Objective: To assess the effects of short-term sensorimotor conditioning on the knee flexors. Design: Randomized controlled trial. Setting: University research laboratory. Participants: 23 males randomly assigned to conditioning (n = 12; age: 20.5 ± 1.8 y; height: 1.80 ± 0.05 m; body mass: 74.3 ± 6.0 kg [mean ± SD]) and no-conditioning control (n = 11; age: 20.6 ± 1.9 y; height: 1.79 ± 0.05 m; body mass: 73.6 ± 6.3 kg) groups. Intervention: Sensorimotor conditioning of the nondominant leg (4 sessions/wk; 3 wk). Main Outcome Measures: Sensorimotor (blind force and limb-position-replication errors) and neuromuscular (peak force, electromechanical delay [volitional and magnetically evoked]) performance of the knee flexors of both legs were assessed. The contralateral limb and an antecedent period of no conditioning were controls. Results: The conditioned leg showed decreased force error to 3.8% (3.8 ± 6.9% vs 6.3 ± 3.7% [mean ± SD], post- vs preconditioning, respectively; F1,21 = 5.4; P = .04) and a trend toward decreased positional error to 2.0% (2.0 ± 6.9% vs 4.7 ± 7.7%, post- vs preconditioning; F1,21 = 2.7; P = .06). Performances were not altered in the control conditions. Modest improvements were noted for volitional electromechanical delay following conditioning (39.8 ± 4.3 ms vs 42.3 ± 5.2 ms [F1,21 = 7.2; P = .01]), but peak force (overall, 202 ± 78 N) and magnetically evoked electromechanical delay (24.7 ± 4.2 ms) were not influenced. Conclusion: Short-term conditioning offered improved sensorimotor performance and positively affected neuromuscular determinants of knee flexor performance in men.

The authors are with the School of Health Sciences, Queen Margaret University, Edinburgh, Scotland, United Kingdom.

Peer (mpeer@qmu.ac.uk) is corresponding author.
  • 1.

    Johansson H, Sjolander P, Sojka P. A sensory role for the cruciate ligaments. Clin Orthop Relat Res. 1991;268:161178. PubMed

  • 2.

    Gleeson NP, Reilly T, Mercer TH, Rakowski S, Rees D. Influence of acute endurance activity on leg neuromuscular and musculoskeletal performance. Med Sci Sports Exerc 1998;30:596608. PubMed doi:10.1097/00005768-199804000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Blackburn JT, Bell DR, Norcross MF, Hudson JD, Engstrom LA. Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness. J Electromyogr Kinesiol. 2009;19:362369. PubMed doi:10.1016/j.jelekin.2008.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Shultz SJ, Perrin DH, Adams MJ, Arnold BL, Gansneder BM, Granata KP. Neuromuscular response characteristics in men and women after knee perturbation in a single-leg, weight-bearing stance. J Athl Train. 2001;36:3743. PubMed

    • Search Google Scholar
    • Export Citation
  • 5.

    Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL. The importance of quadriceps and hamsting muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech. 1999;32:395400. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Sakane M, Livesay GA, Fox RJ, Rudy TW, Runco TJ, Woo SL. Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg Sports Traumatol Arthrosc. 1999;7:9397. PubMed doi:10.1007/s001670050128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Shimokochi Y, Shultz SJ. Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train. 2008;43:396408. PubMed doi:10.4085/1062-6050-43.4.396

  • 8.

    Hewett TE, Ford KR, Myer GD. Anterior cruciate ligament injuries in female athletes: part 2, a meta-analysis of neuromuscular interventions aimed at injury prevention. Am J Sports Med. 2006;34:490498. PubMed doi:10.1177/0363546505282619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Baltzopoulos V, Gleeson NP. Skeletal muscle function. In: Eston R, Reilly T, eds., Physiology (Vol 2): Kinanthropometry and Exercise Physiology Laboratory Manual. 3rd ed. London, UK: Routledge;2009:340.

    • Search Google Scholar
    • Export Citation
  • 10.

    Ashton-Miller JA, Wojtys EM, Huston LJ, Fry-Welch D. Can proprioception really be improved by exercises? Knee Surg Sports Traumatol Arthrosc. 2001;9:128136. PubMed doi:10.1007/s001670100208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Griffin E. Neuromuscular training and injury prevention in sports. Clin Orthop Relat Res. 2003;409:5360. PubMed doi:10.1097/01.blo.0000057788.10364.aa

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23:573578. PubMed

  • 13.

    Rees D, Gleeson NP. The scientific assessment of the injured athlete. Proceedings of the Football Association–Royal College of Surgeons Medical Conference; 1999, Lilleshall, UK.

    • Export Citation
  • 14.

    Sugimoto D, Myer GD, McKeon JM, Hewett TE. Evaluation of the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a critical review of relative risk reduction and numbers-needed-to-treat analyses. Br J Sports Med. 2012;46:979988. PubMed doi:10.1136/bjsports-2011-090895

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Minshull C, Gleeson N, Walters-Edwards M, Eston R, Rees D. Effects of acute fatigue on the volitional and magnetically-evoked electromechanical delay of the knee flexors in males and females. Eur J Appl Physiol. 2007;100:469478. PubMed doi:10.1007/s00421-007-0448-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Gleeson N, Eston R, Minshull C, et al. Effects of antecedent flexibility conditioning on neuromuscular and sensorimotor performance during exercise-induced muscle damage. J Exerc Sci Fit. 2013;11:107117. doi:10.1016/j.jesf.2013.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Moore MA, Kukulka CG. Depression of Hoffmann reflexes following voluntary contraction and implications for proprioceptive neuromuscular facilitation therapy. Phys Ther. 1991;71:321329; discussion 329–333. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gleeson NP. Assessment of neuromuscular performance using electromyography. In: Eston R, Reilly T, eds., Physiology (vol. 2.): Kinanthropometry and Exercise Physiology Laboratory Manual. 3rd ed. London, UK: Routledge;2009:4172.

    • Search Google Scholar
    • Export Citation
  • 19.

    Minshull C, Rees D, Gleeson NP. Joint angle affects volitional and magnetically evoked neuromuscular performance differentially. J Electromyogr Kinesiol. 2011;21:672677. PubMed doi:10.1016/j.jelekin.2011.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lattanzio JP, Petrella RJ. Knee proprioception: a review of mechanisms, measurement, and implications of muscular fatigue. Orthopedics. 1998;21:463471. PubMed

    • Search Google Scholar
    • Export Citation
  • 21.

    Riva D, Bianchi R, Rocca F, Mamo C. Proprioceptive training and injury prevention in a professional men’s basketball team: a six-year prospective study. J Strength Cond Res. 2016;30:461475. PubMed doi:10.1519/JSC.0000000000001097

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Caraffa A, Cerulli G, Projetti M, Aisa G, Rizzo A. Prevention of anterior cruciate ligament injuries in soccer. A prospective controlled study of proprioceptive training. Knee Surg Sports Traumatol Arthrosc. 1996;4:1921. PubMed doi:10.1007/BF01565992

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes: a prospective study. Am J Sports Med. 1999;27:699706. PubMed doi:10.1177/03635465990270060301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Waldén M, Krosshaug T, Bjørneboe J, Einar Andersen T, Faul O, Hägglund M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med. 2015:49(22):14521460.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Fu FH, Stone DA. Sports Injuries: Mechanisms, Prevention, Treatment. Philadelphia, PA: Williams & Wilkins; 1994:153187.

  • 26.

    Enoka RM. Neuromechanical Basis of Kinesiology. 2nd ed. Champaign, IL: Human Kinetics;1994:197200.

  • 27.

    Hartig DE, Henderson JM. Increasing hamstring flexibility decreases lower extremity overuse injuries in military basic trainees. Am J Sports Med. 1999;27:173176. PubMed doi:10.1177/03635465990270021001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Solomonow M. Ligaments: a source of work-related musculoskeletal disorders. J Electromyogr Kinesiol. 2004;14:4960. PubMed doi:10.1016/j.jelekin.2003.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kubo K, Kanehisa H, Ito M, Fukunaga T. Effects of isometric training on the elasticity of human tendon structures in vivo. J Appl Physiol. 2001;91:2632. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cavanagh PR, Komi PV. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur J Appl Physiol Occup Physiol. 1979;42:159163. PubMed doi:10.1007/BF00431022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sasaki K, Sasaki T, Ishii N. Acceleration and force reveal different mechanisms of electromechanical delay. Med Sci Sports Exerc. 2011;43:12001206. PubMed doi:10.1249/MSS.0b013e318209312c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McComas AJ. Skeletal Muscle: Form and Function. Champaign, IL: Human Kinetics; 1996.

  • 33.

    McHugh M, Connolly D, Eston RG, Gleim GW. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999;27:157170. PubMed doi:10.2165/00007256-199927030-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9:135159. doi:10.1123/jsr.9.2.135

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 114 102 8
Full Text Views 4 3 0
PDF Downloads 3 3 0