Effects of a Novel Neurodynamic Tension Technique on Muscle Extensibility and Stretch Tolerance: A Counterbalanced Crossover Study

in Journal of Sport Rehabilitation

Click name to view affiliation

Max Pietrzak
Search for other papers by Max Pietrzak in
Current site
Google Scholar
PubMed
Close
and
Niels B.J. Vollaard
Search for other papers by Niels B.J. Vollaard in
Current site
Google Scholar
PubMed
Close
Restricted access

Context: Neurodynamic tension affects hamstring extensibility and stretch tolerance and is considered important in hamstring injury management. Neurodynamic tension was postulated to affect segmental muscle extensibility and stretch tolerance and potentially also to demonstrate extrasegmental and contralateral effects. Objectives: To assess the effects of a novel sciatic-tibial neurodynamic tension technique, the modified long sit slump (MLSS), on segmental, extrasegmental, and contralateral muscle extensibility and stretch tolerance. Study Design: Counterbalanced crossover study. Setting: University research laboratory. Participants: 13 healthy and active subjects (mean ± SD age 24 ± 8 y; BMI, 23.1 ± 2.8 kg/m2). Intervention: MLSS application (5 s, 5 repetitions, 3 sets) on 2 occasions with a 3-wk washout period, and either stance- or skill-leg treated in a counterbalanced manner. Main Outcome Measures: Segmental and extrasegmental muscle extensibility was measured using passive straight-leg raise (PSLR) and prone knee bend (PKB) at pre-, immediately post-, and 1 h postintervention. Stretch-intensity ratings were measured using a simple numerical rating scale (SNRS). Results: MLSS significantly increased PSLR and PKB bilaterally (P < .001). The effect for PSLR was greater in the ipsilateral leg compared to the contralateral leg (baseline to 1 h post: +9° ± 6° and +5° ± 5°, respectively, P < .001) but not for PKB (baseline to 1 h post: ipsilateral leg +5° ± 5°, contralateral leg +5° ±  4°). For both PSLR and PKB the effect of the first session was retained at the start of the second session 3 wk later. SNRS data were consistent with increased stretch tolerance. Conclusions: Application of a novel sciatic-tibial neurodynamic tension technique, the MLSS, increases muscle extensibility and stretch tolerance segmentally, extrasegmentally and contralaterally. Level of Evidence: 2C outcomes research.

Pietrzak and Vollaard are with the Dept of Health, University of Bath, Bath, United Kingdom.

Pietrzak (maxpie@hotmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional football: the UEFA injury study. Br J Sports Med. 2011;45:553558. PubMed doi:10.1136/bjsm.2009.060582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Maniar N, Shield AJ, Williams MD, Timmins RG, Opar DA. Hamstring strength and flexibility after hamstring strain injury: a systematic review and meta-analysis. Br J Sports Med. 2016;50:909920. PubMed doi:10.1136/bjsports-2015-095311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41:734741. PubMed doi:10.1177/0363546513476270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    de Visser HM, Reijman M, Heijboer MP, Bos PK. Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med. 2012;46:124130. PubMed doi:10.1136/bjsports-2011-090317

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Brukner P. Hamstring injuries: prevention and treatment-an update. Br J Sports Med. 2015;49:12411244. PubMed doi:10.1136/bjsports-2014-094427

  • 6.

    Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47:351358. PubMed doi:10.1136/bjsports-2011-090664

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Van Beijsterveldt A, Van der Port I, Vereijken A, Backx F. Risk factors for hamstring injuries in male soccer players: a systematic review of prospective studies. Scand J Med Sci Sports. 2013;23:253262. PubMed doi:10.1111/j.1600-0838.2012.01487.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Askling C, Malliaropoulos N, Karlsson J. High-speed running type or stretching–type of hamstring injuries makes a difference to treatment and prognosis. Br J Sports Med. 2012;46:8687. PubMed doi:10.1136/bjsports-2011-090534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lempianen L, Banke IJ, Johansson K, et al. Clinical principles in the management of hamstring injuries. Knee Surg Sports Traumatol Arthrosc. 2015;23:24492456. doi:10.1007/s00167-014-2912-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Askling C, Tengvar M, Thorstennsson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47:953959. PubMed doi:10.1136/bjsports-2013-092165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fyfe J, Opar D, Williams M, Shield A. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Myograp Kinesiol. 2013;23:523530. doi:10.1016/j.jelekin.2012.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Meeuwisse W, Tyreman H, Hagel B, Emery C. A dynamic model of etiology in sport injury: the recursive nature of risk and causation. Clin J Sports Med. 2007;17:215219. doi:10.1097/JSM.0b013e3180592a48

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bahr H, Holme I. Risk factors for sports injuries– a methodological approach. Br J Sports Med. 2003;37:384392. PubMed doi:10.1136/bjsm.37.5.384

  • 14.

    Butler D. Mobilisation of Nervous System. Singapore: Churchill Livingstone; 1991.

  • 15.

    Shacklock M. Neurodynamics. Physiotherapy. 1995;81:916. doi:10.1016/S0031-9406(05)67024-1

  • 16.

    Coppieters MW, Andersen S, Johansen R, et al. Excursion of the sciatic nerve during nerve mobilization exercises: an in vivo cross-sectional study using dynamic ultrasound imaging. J Orthop Sports Phys Ther. 2016;45:731737. PubMed doi:10.2519/jospt.2015.5743

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    McHugh M, Johnson C, Morrison R. The role of neural tension in hamstring flexibility. Scand J Med Sci Sports. 2013;22:164169. doi:10.1111/j.1600-0838.2010.01180.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sharma S, Balthillaya G, Rao R, Mani R. Short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretching of hamstrings on knee extension angle in healthy individuals: a randomized controlled trial. Phys Ther Sport. 2016;17:3037. doi:10.1016/j.ptsp.2015.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kornberg C, Lew P. The effect of stretching neural structures on grade 1 hamstring injuries. J Orthop Sports Phys Ther. 1998;10:481487. doi:10.2519/jospt.1989.10.12.481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Turl S, George K. Adverse neural tension: a factor in repetitive hamstring strain? J Orthop Sports Phys Ther.1998;27:1621. PubMed doi:10.2519/jospt.1998.27.1.16

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Maitland G. The slump test: examination and treatment. Aust J Physiother. 1985;31:215219. PubMed doi:10.1016/S0004-9514(14)60634-6

  • 22.

    Gibbs N, Cross T, Cameron M, Houang M. The accuracy of MRI in predicting recovery and recurrence of acute grade 1 hamstring muscle strains within the same season in Australian rules football players. J Med Sci Sport. 2004;7:248258. doi:10.1016/S1440-2440(04)80016-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Gajdosik R. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech. 2001;16:87101. doi:10.1016/S0268-0033(00)00061-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Magnusson P, Simonsen E, Aagaard P, Sorensen H, Kjaer M. A mechanism for altered flexibility to human skeletal muscle. J Physiol. 1996;497:291298. PubMed doi:10.1113/jphysiol.1996.sp021768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Weppler C, Magnusson S. Increasing muscle extensibility: a matter of increasing length or modifying sensation. Phys Ther. 2010;90:438449. PubMed doi:10.2522/ptj.20090012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Magnusson S, Simonsen E, Aagaard P, Kjaer M. Biomechanical responses to repeated muscle stretches in human hamstring muscle in-vivo. Am J Sports Med. 1996;24:622628. PubMed doi:10.1177/036354659602400510

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ayala F, Sainz de Baranda P. Effect of 3 different active stretch durations on hip flexion range of motion. J Strength Cond Res. 2010;24:430436. PubMed doi:10.1519/JSC.0b013e3181c0674f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cipriani D, Terry M, Haines M, Tabibnia A, Lyssanova O. Effect of stretch frequency and sex on the rate of gain and rate of loss in muscle flexibility during a hamstring-stretching program: a randomised single-blind longitudinal study. J Strength Cond Res. 2012;26:21192129. PubMed doi:10.1519/JSC.0b013e31823b862a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Sainz de Baranda F, Ayala P. Chronic flexibility improvements after 12 week of stretching program utilising the ACSM recommendations: hamstring flexibility. Int J Sports Med. 2010;31:389396. doi:10.1055/s-0030-1249082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Apostolopoulos N, Metsios GS, Flouris AD, Koutedakis Y, Wyon MA. The relevance of stretch intensity and position—a systematic review. Front Psychol. 2016;6:125. doi:10.3389/fpsyg.2015.01128

    • Search Google Scholar
    • Export Citation
  • 31.

    McHugh M, Tallent J, Johnson C. The role of neural tension in stretch-induced strength loss. J Strength Cond Res. 2013;27:13271332. doi:10.1519/jsc.0b013e31828a1e73

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Castellote-Caballero Y, Valenza M, Martin-Martin L, Cabrera-Martos I, Puentedura E, Fernandez-de-las-Penas C. Effects of a neurodynamic sliding technique on hamstring flexibility in healthy male soccer players: a pilot study. Phys Ther Sport. 2013;14:156162. PubMed doi:10.1016/j.ptsp.2012.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Webright W, Randolph B, Perrin D. Comparison of non-ballistic active knee extension in neural slump position and static stretch techniques on hamstring flexibility. J Orthop Sports Phys Ther. 1997;26:713. doi:10.2519/jospt.1997.26.1.7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Ayala F, Sainz de Baranda P, De Ste Croix M, Santonja F. Comparison of active stretching technique in males with normal and limited hamstring flexibility. Phys Ther Sport. 2013;14:98104. PubMed doi:10.1016/j.ptsp.2012.03.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    De Coster L, Cleland J, Altier IC, Russell P. The effects of hamstring stretching on range of motion: a systematic literature review. J Orthop Sports Phys Ther. 2005;35:377387. doi:10.2519/jospt.2005.35.6.377

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Law RYW, Harvey LH, Michael KN, Tonkin L, De Sousa M, Finniss DG. Stretch exercises increase tolerance to stretch in patients with chronic musculoskeletal pain: a randomized controlled trial. Phys Ther. 2009;89:10161026. PubMed doi:10.2522/ptj.20090056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Khalsa P, Weiquing G. Encoding of tensile stress and strain during stretch by muscle mechano-nociceptors. Muscle Nerve. 2004;30:216224. PubMed doi:10.1002/mus.20096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Mense S. Functional anatomy of muscle: muscle, nociceptors, and afferent fibers. In: Mense S, Gerwin R, eds. Muscle Pain: Understanding the Mechanisms. Berlin, Germany: Springer-Verlag; 2010:1748. doi:10.1007/978-3-540-85021-2_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Yarnitsky D. Low threshold nociceptors: a challenge to sensory physiology. Pain. 2008;135:56. PubMed doi:10.1016/j.pain.2007.12.012

  • 40.

    McNair P, Portero P. Using isokinetic dynamometers for measurements associated with tissue extensibility. Isokinet Exerc Sci. 2005;13:5356.

    • Search Google Scholar
    • Export Citation
  • 41.

    Marchettini P. Muscle pain: animal and human experimental and clinical studies. Muscle Nerve. 1993;16:10331039. PubMed doi:10.1002/mus.880161006

  • 42.

    Liu XG, Sandkuhler J. Characterization of long-term potentiation of C-fiber-evoked potentials in spinal dorsal horn of adult rat: essential role of NK1 and NK2 receptors. J Neurophysiol. 1997;78:19731982. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Liu XG, Morton CR, Azkue JJ, Zimmermann M, Sandkuhler J. Long term depression of C-fibre evoked spinal field potentials by stimulation of primary afferent Aδ fibres in the adult rat. Eur J Neurosci. 1998;10:30693075. PubMed doi:10.1046/j.1460-9568.1998.00310.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Mense S. Central nervous mechanisms of muscle pain: ascending pathways, central sensitisation, and pain-modulating systems. In: Mense S, Gerwin R, eds. Muscle Pain: Understanding the Mechanisms. Berlin: Springer-Verlag; 2010:105176. doi:10.1007/978-3-540-85021-2_4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Leah J, Snow P. Neuropeptides in physiologically identified mammalian sensory neurons. Neurosci Lett. 1985;56:257263. PubMed doi:10.1016/0304-3940(85)90252-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Reinert A, Kaske A, Mense S. Inflammation-induced increase in the density of neuropeptide-immunoreactive nerve endings in rat skeletal muscle. Exp Brain Res. 1998;121:174180. PubMed doi:10.1007/s002210050449

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Mense S. Peripheral mechanisms of muscle pain: response behaviour of muscle nociceptors and factors eliciting local muscle pain. In: Mense S, Gerwin R, eds. Muscle Pain: Understanding the Mechanisms. Berlin, Germany: Springer-Verlag; 2010:49104. doi:10.1007/978-3-540-85021-2_3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Cheng C, Cheng J, Chena C, Rauc R, Changa Y, Tsaura M. Nerve growth factor–induced synapse-like structures in contralateral sensory ganglia contribute to chronic mirror-image pain. Pain. 2016;156:22952309 doi:10.1097/j.pain.0000000000000280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Groen G, Baljet B, Drukker J. The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir. 1988;92:3946. PubMed doi:10.1007/BF01401971

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Jinkins J. The anatomic and physiologic basis of local, referred and radiating lumbosacral pain syndromes related to disease of the spine. J Neuroradiol. 2003;31:163180. doi:10.1016/S0150-9861(04)96988-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Li P, Zhuo M. Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature. 1998;393:695698. PubMed doi:10.1038/31496

  • 52.

    Mense S. The pathogenesis of muscle pain. Curr Pain Headache Rep. 2003;7:419425. PubMed doi:10.1007/s11916-003-0057-6

  • 53.

    Liu X, Zhou L. Long-term potentiation at spinal C-fiber synapses: a target for pathological pain. Curr Pharm Des. 2015;21:16. doi:10.1016/j.coph.2014.11.009

    • Search Google Scholar
    • Export Citation
  • 54.

    Raymond C. LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci. 2007;30:167175. doi:10.1016/j.tins.2007.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Malenka R, Bear M. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:521. PubMed doi:10.1016/j.neuron.2004.09.012

  • 56.

    Mokin M, Zheng Z, Keifer J. Conversion of silent synapses into the active pool by selective GluR1-3 and GluR4 AMPAR trafficking during in vitro classical conditioning. J Neurophysiol. 2007;98:12781286. PubMed doi:10.1152/jn.00212.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Bjorkland M, Hamberg J, Crenshaw A. Sensory adaptations after a 2-week stretching regimen of the rectus femoris muscle. Arch Phys Med Rehabil. 2001;82:12451250. doi:10.1053/apmr.2001.24224

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Boyd B. Measurement properties of a hand-held inclinometer during straight leg raise neurodynamic testing. Physiotherapy. 2012;98:174179. PubMed doi:10.1016/j.physio.2011.04.352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Briggs KK, Steadman JR, Hay CJ, Hines CL. Lysholm score and Tegner activity level in individuals with normal knees. Am J Sports Med. 2009;37:898901. PubMed doi:10.1177/0363546508330149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Gajdosik R, Giuliani C, Bohannon R. Passive compliance and length of the hamstring muscles of healthy men and women. Clin Biomech. 1990;5:2329. doi:10.1016/0268-0033(90)90028-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Youdas J, Krause D, Hollman J, Harmsen W, Laskowski E. The influence of gender and age on hamstring muscle length in healthy adults. J Orthop Sports Phys Ther. 2005;35:246252. PubMed doi:10.2519/jospt.2005.35.4.246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Bohannon R, Gajdosik R, Leveau B. Contribution of pelvic and lower limb motion to increase in the angle of passive straight leg raising. Phys Ther. 1985;65:474476. PubMed doi:10.1093/ptj/65.4.474

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Ellis R. Neurodynamic Evaluation of the Sciatic Nerve During Neural Mobilisation: Ultrasound Imaging Assessment of Sciatic Nerve Movement and the Clinical Implications for Treatment [doctoral thesis]. Auckland, New Zealand: Auckland University of Technology; 2012.

    • Search Google Scholar
    • Export Citation
  • 64.

    Sullivan M, Dejulia J, Worrell T. Effect of pelvic position and stretching method on hamstring muscle flexibility. Med Sci Sports Exerc. 1992;24:13831389. PubMed doi:10.1249/00005768-199212000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Ridehalgh C, Moore A, Hough A. Normative sciatic nerve excursion during a modified straight leg raise test. Man Ther. 2014;19:5964. PubMed doi:10.1016/j.math.2013.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Minarro P, Andujar B, Rodriguez-Garcia P, Toro E. A comparison of the spine posture amongst several sit and reach test protocols. J Sci Med Sport. 2007;10:456462. PubMed doi:10.1016/j.jsams.2006.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Sturesson B, Uden A, Vleeming A. A radiostereometric analysis of the movements of the sacroiliac joints in the reciprocal straddle position. Spine. 2000;25:214217. PubMed doi:10.1097/00007632-200001150-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Meunier S, Pierrot-Deseilligny E, Simonetta M. Pattern of monosynaptic heteronymous 1a connections in the human lower limb. Exp Brain Res. 1993;96:534544. PubMed doi:10.1007/BF00234121

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Simonetta-Moreau M, Marque P, Marchand-Pauvert V, Pierrot-Deseilligny E. The pattern of human motoneurones by probable group 2 muscle afferents. J Physiol. 1999;517:287300. PubMed doi:10.1111/j.1469-7793.1999.0287z.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Baron R, Janig W, Kolliman W. Sympathetic and afferent somata projecting in hindlimb nerves and the anatomical organization of the lumbar sympathetic nervous system of the rat. J Compar Neurol. 1988;275:460468. doi:10.1002/cne.902750310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    McCloskey DI, Mitchel JH. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond). 1972;224:173186. doi:10.1113/jphysiol.1972.sp009887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Shields R. Functional anatomy of the autonomic nervous system. J Clin Neurophysiol. 1993;10:213. PubMed doi:10.1097/00004691-199301000-00002

  • 73.

    Randic M, Hecimovic H, Ryu PD. Substance P modulates glutamate-induced currents in acutely isolated rat spinal dorsal horn neurones. Neurosci Lett. 1990;117:7480. PubMed doi:10.1016/0304-3940(90)90122-P

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Beissner F, Meissner K, Bar K, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33:1050310511. PubMed doi:10.1523/JNEUROSCI.1103-13.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Gibbins I. Functional organisation of autonomic neural pathways. Organogenesis. 2013;9:169175. PubMed doi:10.4161/org.25126

  • 76.

    Gibbins I, Jobling P, Messenger J, Teo E, Morris J. Neuronal morphology and the synaptic organisation of the sympathetic ganglia. J Auton Nerv Syst. 2000;81:104109. PubMed doi:10.1016/S0165-1838(00)00132-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Ondicova K, Mravec B. Multilevel interactions between the sympathetic and parasympathetic nervous systems: a mini review. Endocr Regul. 2010;44:6975. PubMed doi:10.4149/endo_2010_02_69

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Moseley GL, Butler DS. 15 years of explaining pain-the past, present and future. J Pain. 2015;16:807813. PubMed doi:10.1016/j.jpain.2015.05.005

  • 79.

    Sengupta P. Health impacts of yoga and pranayama: a state-of-the-art review. Int J Prev Med. 2012;3:444458. PubMed

  • 80.

    Butler D. Neurodynamics. In: Butler D, ed. The Sensitive Nervous System. Adelaide, Australia; NOI Group Publications; 2000:96127.

  • 81.

    Gisselman AS, Baxter GD, Wright A, Hegedus E, Tumilty S. Musculoskeletal injuries and heart rate variability: Is there a link? Med Hyp. 2016;87:17. doi:10.1016/j.mehy.2015.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Dilley A, Lynn B, Greening J, DeLeon N. Quantitative in-vivo studies of median nerve sliding in response to wrist, elbow, shoulder and neck movements. Clin Biomech. 2003;18:899907. doi:10.1016/S0268-0033(03)00176-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 83.

    Matheson J. Research and neurodynamics–is neurodynamics worthy of scientific merit? In: Butler D, ed. The Sensitive Nervous System. Adelaide, Australia: NOI Group Publications; 2000:342367.

    • Search Google Scholar
    • Export Citation
  • 84.

    Page P. Research designs in sports physical therapy. Int J Sports Phys Ther. 2012;7:482492. PubMed

All Time Past Year Past 30 Days
Abstract Views 2962 1193 92
Full Text Views 24 7 0
PDF Downloads 31 11 0