Examination of Knee Morphology After Secondary Ipsilateral ACL Injury Compared With Those That Have Not Been Reinjured: A Preliminary Study

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Modifiable and nonmodifiable risk factors have been identified for sustaining a primary anterior cruciate ligament (ACL) injury; however, less research is available examining risk factors for a second injury. Identifying whether bony morphological factors are different (or more exaggerated) among those that experience a secondary ACL injury is critical to understanding if nonmodifiable risk factors are associated with a second injury. Objective: To determine if bony morphology is different among those that experience a secondary ACL reinjury as compared with those that do not. Design: Case-control. Setting: University laboratory. Participants and Interventions: ACL participants were tracked after return to play following primary reconstruction, and if individuals experienced a second ipsilateral injury (ACLx2; n = 14, 8f/6m, 17.9 ± 4.0 y), the primary clinical MRI was analyzed for bony morphological risk factors. ACLx2 participants were matched to individuals (sex, age, height, graft, gender, and activity level) that had undergone reconstruction but did not experience reinjury (ACLx1, n = 14, 8f/6m, 18.7 ± 4.0 y). Ten controls were also enrolled (5m/5f, 20.8 ± 3.9 y) for the purposes of comparing the authors’ ACL data against healthy knees. Main Outcome Measures: Lateral and medial posterior tibial slopes (LPTS, MPTS), notch shape index (NSI), and medial tibial plateau depth of concavity (MDC). Results: All ACL-reconstructed patients (combined ACLx1 and ACLx2 group) had a steeper LPTS than controls (d = 0.87, 95% CI 0.11–1.60, P = .023); however, no difference in LPTS was found between ACLx1 and ACLx2 (P > .05). No differences in MPTS, NSI, and MDC were found between all ACL participants (combined ACLx2 and ACLx1) and controls or between ACLx1 and ACLx2 (P > .05). Conclusions: Compared to healthy individuals, a steeper LPTS is a common bony abnormality in all ACL-injured participants. Individuals that go on to experience a second ipsilateral ACL injury do not have more exaggerated bony morphology than those that do not suggesting that differences in modifiable risk factors at return to play may contribute to reinjury.

Digiacomo and Lepley are with the Dept of Kinesiology, University of Connecticut, Storrs, CT. Palmieri-Smith is with the Dept of Orthopedic Surgery, and Palmieri-Smith and Redman, the School of Kinesiology, University of Michigan, Ann Arbor, MI. Lepley is also with the Dept of Orthopaedic Surgery, UConn Health, Farmington, CT.

Lepley (Lindsey.Lepley@uconn.edu) is corresponding author.
  • 1.

    Griffin LY, Agel J, Albohm MJ, et al. Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg. 2000;8(3):141–150. PubMed doi:10.5435/00124635-200005000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Griffin LY, Albohm MJ, Arendt EA, et al. Understanding and preventing noncontact anterior cruciate ligament injuries. Am J Sports Med. 2006;34(9):1512–1532. PubMed doi:10.1177/0363546506286866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cimino F, Volk BS, Setter D. Anterior cruciate ligament injury: diagnosis, management, and prevention. Am Fam Physician. 2010;82(8):917–922. PubMed

  • 4.

    Wilk KE. Anterior cruciate ligament injury prevention and rehabilitation: let’s get it right. J Orthop Sports Phys Ther. 2015;45(10):729–730. PubMed doi:10.2519/jospt.2015.0109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Di Stasi S, Myer GD, Hewett TE. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2013;43(11):777–792. PubMed doi:10.2519/jospt.2013.4693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Wright RW, Magnussen RA, Dunn WR, Spindler KP. Ipsilateral graft and contralateral ACL rupture at five years or more following ACL reconstruction: a systematic review. J Bone Joint Surg Am. 2011;93(12):1159–1165. PubMed doi:10.2106/JBJS.J.00898

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Goerger BM, Marshall SW, Beutler AI, Blackburn JT, Wilckens JH, Padua DA. Anterior cruciate ligament injury alters preinjury lower extremity biomechanics in the injured and uninjured leg: the JUMP-ACL study. Br J Sports Med. 2015;49:188–1895. PubMed doi:10.1136/bjsports-2013-092982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sturnick DR, Vacek PM, DeSarno MJ, et al. Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med. 2015;43(4):839–847. PubMed doi:10.1177/0363546514563277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Paterno MV. Incidence and predictors of second anterior cruciate ligament injury after primary reconstruction and return to sport. J Athl Train. 2015;50(10):1097–1099. PubMed doi:10.4085/1062-6050-50.10.07

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med. 1998;26(3):402–408. PubMed doi:10.1177/03635465980260031001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Paterno MV, Schmitt LC, Ford KR, et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010;38(10):1968–1978. PubMed doi:10.1177/0363546510376053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lepley LK, Strickland MA, Palmieri-Smith RM. Alterations in hamstring muscle activity at return-to-play post-ACLr: A protective mechanism among patients that do not reinjure? J Athl Train. 2015;50(10):1108.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hashemi J, Chandrashekar N, Mansouri H, et al. Shallow Medial Tibial Plateau and Steep Medial and Lateral Tibial Slopes new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38(1):54–62. PubMed doi:10.1177/0363546509349055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Beynnon BD, Hall JS, Sturnick DR, et al. Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males a prospective cohort study with a nested, matched case-control analysis. Am J Sports Med. 2014;42:1039–1048. PubMed doi:10.1177/0363546514523721

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Lipps DB, Wilson AM, Ashton-Miller JA, Wojtys EM. Evaluation of different methods for measuring lateral tibial slope using magnetic resonance imaging. Am J Sports Med. 2011;40(12):2731–2736. doi:10.1177/0363546512461749

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hudek R, Regenfelder F, Koch PP. Novel measurement technique of the tibial slope on conventional MRI. Clin Orthop Relat Res. 2009;467(8):2066–2072. PubMed doi:10.1007/s11999-009-0711-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Murshed KA, Cicekcibasi AE, Karabacakoglu A, Seker M, Ziylan T. Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat. 2005;27(2):108–112. PubMed doi:10.1007/s00276-004-0295-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hashemi J, Chandrashekar N, Gill B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg. 2008;90(12):2724–2734. doi:10.2106/JBJS.G.01358

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    McLean SG, Lucey SM, Rohrer S, Brandon C. Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clin Biomech (Bristol, Avon). 2010;25(8):781–788. doi:10.1016/j.clinbiomech.2010.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen J. Statistical Analysis for the Behavioral Sciences. New York, NY: Academic Press; 1977.

  • 21.

    Stijak L, Herzog RF, Schai P. Is there an influence of the tibial slope of the lateral condyle on the ACL lesion? A case-control study. Knee Surg Sports Traumatol Arthrosc. 2008;16(2):112–117. PubMed doi:10.1007/s00167-007-0438-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Zeng C, Cheng L, Wei J, et al. The influence of the tibial plateau slopes on injury of the anterior cruciate ligament: a meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2014;22(1):53–65. PubMed doi:10.1007/s00167-012-2277-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Christensen JJ, Krych AJ, Engasser WM, Vanhees MK, Collins MS, Dahm DL. Lateral tibial posterior slope is increased in patients with early graft failure after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(10):2510–2514. PubMed doi:10.1177/0363546515597664

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hudek R, Fuchs B, Regenfelder F, Koch PP. Is noncontact ACL injury associated with the posterior tibial and meniscal slope? Clin Orthop Relat Res. 2011;469(8):2377–2384. PubMed doi:10.1007/s11999-011-1802-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Görmeli CA, Görmeli G, Özdemir Z, Kahraman AS, Yildirim O, Gözükara H. The effect of the intercondylar notch width index on anterior cruciate ligament injuries: a study on groups with unilateral and bilateral ACL injury. Acta Orthop Belg. 2015;81(2):4

    • Search Google Scholar
    • Export Citation
  • 26.

    Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC. Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med. 2010;38(3):455–463. PubMed doi:10.1177/0363546509350914

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health. 2015;7(3):231–238. PubMed doi:10.1177/1941738115578112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry following ACL reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43(7):1662–1669. PubMed doi:10.1177/0363546515578252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750–759. PubMed doi:10.2519/jospt.2012.4194

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tourville TW, Jarrell KM, Naud S, Slauterbeck JR, Johnson RJ, Beynnon BD. Relationship between isokinetic strength and tibiofemoral joint space width changes after anterior cruciate ligament reconstruction. Am J Sports Med. 2014;42(2):302–311. PubMed doi:10.1177/0363546513510672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Barber-Westin SD, Noyes FR. Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sports Med. 2011;39(3):100–110. doi:10.3810/psm.2011.09.1926

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Wright RW, Haas AK, Anderson J, et al. Anterior cruciate ligament reconstruction rehabilitation: MOON guidelines. Sports Health. 2015;7(3):239–243. PubMed doi:10.1177/1941738113517855

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Grant JA. Updating recommendations for rehabilitation after ACL reconstruction: a review. Clin J Sport Med. 2013;23(6):501–502. PubMed doi:10.1097/JSM.0000000000000044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 106 106 12
Full Text Views 13 13 0
PDF Downloads 8 8 0