Relationships of Functional Tests Following ACL Reconstruction: Exploratory Factor Analyses of the Lower Extremity Assessment Protocol

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Context: After ACL reconstruction (ACLR), deficits are often assessed using a variety of functional tests, which can be time consuming. It is unknown whether these tests provide redundant or unique information. Objective: To explore relationships between components of a battery of functional tests, the Lower Extremity Assessment Protocol (LEAP) was created to aid in developing the most informative, concise battery of tests for evaluating ACLR patients. Design: Descriptive, cross-sectional. Setting: Laboratory. Participants: 76 ACLR patients (6.86±3.07 months postoperative) and 54 healthy participants. Intervention: Isokinetic knee flexion and extension at 90 and 180 degrees/second, maximal voluntary isometric contraction for knee extension and flexion, single leg balance, 4 hopping tasks (single, triple, crossover, and 6-meter timed hop), and a bilateral drop vertical jump that was scored with the Landing Error Scoring System (LESS). Main Outcome Measures: Peak torque, average torque, average power, total work, fatigue indices, center of pressure area and velocity, hop distance and time, and LESS score. A series of factor analyses were conducted to assess grouping of functional tests on the LEAP for each limb in the ACLR and healthy groups and limb symmetry indices (LSI) for both groups. Correlations were run between measures that loaded on retained factors. Results: Isokinetic and isometric strength tests for knee flexion and extension, hopping, balance, and fatigue index were identified as unique factors for all limbs. The LESS score loaded with various factors across the different limbs. The healthy group LSI analysis produced more factors than the ACLR LSI analysis. Individual measures within each factor had moderate to strong correlations. Isokinetic and isometric strength, hopping, balance, and fatigue index provided unique information. Conclusions: Within each category of measures, not all tests may need to be included for a comprehensive functional assessment of ACLR patients due to the high amount of shared variance between them.

DiFabio is with the Dept of Kinesiology and Applied Physiology, University of Delaware, Newark, DE. Slater, Norte, Goetschius, Hart, and Hertel are with the Dept of Kinesiology, University of Virginia, Charlottesville, VA.

Address author correspondence Lindsay V. Slater at ls4zj@virginia.edu.
  • 1.

    Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA. Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med. 2010;38(3):586593. PubMed doi:10.1177/0363546509349492

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fitzgerald GK, Axe MJ, Synder-Mackler L. A decision-making scheme for returning patients to high-level activity with nonoperative treatment after anterior cruciate ligament rupture. Knee Surg Sports Traumatol Arthrosc. 2000;8(2):7682. PubMed doi:10.1007/s001670050190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Myer GD, Paterno MV, Ford KR, Hewett TE. Neuromuscular training techniques to target deficits before return to sport after anterior cruciate ligament reconstruction. J Strength Cond Res. 2008;22(3):9871014. PubMed doi:10.1519/JSC.0b013e31816a86cd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Diermann N, Schumacher T, Schanz S, Raschke MJ, Petersen W, Zantop T. Rotational instability of the knee: internal tibial rotation under a simulated pivot shift test. Arch Orthop Trauma Surg. 2009;129(3):353358. PubMed doi:10.1007/s00402-008-0681-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Tibone JE, Antich TJ, Fanton GS, Moynes DR, Perry J. Functional analysis of anterior cruciate ligament instability. Am J Sports Med. 1986;14(4):276284. PubMed doi:10.1177/036354658601400406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bryant AL, Kelly J, Hohmann E. Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction. J Orthop Res. 2008;26(1):126135. PubMed doi:10.1002/jor.20472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Petersen W, Taheri P, Forkel P, Zantop T. Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg. 2014;134(10):14171428. PubMed doi:10.1007/s00402-014-1992-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zouita Ben Moussa A, Zouita S, Ben Salah FZ. Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Ann Phys Rehabil Med. 2009;52(6):475484. PubMed doi:10.1016/j.rehab.2009.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Shiraishi M, Mizuta H, Kubota K, Otsuka Y, Nagamoto N, Takagi K. Stabilometric assessment in the anterior cruciate ligament-reconstructed knee. Clin J Sport Med. 1996;6(1):3239. PubMed doi:10.1097/00042752-199601000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bonfim TR, Jansen Paccola CA, Barela JA. Proprioceptive and behavior impairments in individuals with anterior cruciate ligament reconstructed knees. Arch Phys Med Rehabil. 2003;84(8):12171223. PubMed doi:10.1016/S0003-9993(03)00147-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bell DR, Smith MD, Pennuto AP, Stiffler MR, Olson ME. Jump-landing mechanics after anterior cruciate ligament reconstruction: a landing error scoring system study. J Athl Train. 2014;49(4):435441. PubMed doi:10.4085/1062-6050-49.3.21

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Abrams GD, Harris JD, Gupta AK, et al. Functional performance testing after anterior cruciate ligament reconstruction. A systematic review. Orthop J Sports Med. 2014;2(1). PubMed doi:10.1177/2325967113518305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Knezevic OM, Mirkov DM, Kadija M, Nedeljkovic A, Jaric S. Asymmetries in explosive strength following anterior cruciate ligament reconstruction. Knee. 2014;21(6):10391045. PubMed doi:10.1016/j.knee.2014.07.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Reid A, Birmingham TB, Stratford PW, Alcock GK, Giffin JR. Hop testing provides a reliable and valid outcome measure during rehabilitation after anterior cruciate ligament reconstruction. Phys Ther. 2007;87(3):337349. PubMed doi:10.2522/ptj.20060143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy. 2011;27(12):16971705. PubMed doi:10.1016/j.arthro.2011.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Zwolski C, Schmitt LC, Quatman-Yates C, Thomas S, Hewett TE, Paterno MV. The influence of quadriceps strength asymmetry on patient-reported function at time of return to sport after anterior cruciate ligament reconstruction. Am J Sports Med. 2015;43(9):22422249. PubMed doi:10.1177/0363546515591258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Palmieri-Smith RM, Lepley LK. Quadriceps strength asymmetry after anterior cruciate ligament reconstruction alters knee joint biomechanics and functional performance at time of return to activity. Am J Sports Med. 2015;43(7):16621669. PubMed doi:10.1177/0363546515578252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ithurburn MP, Paterno MV, Ford KR, Hewett TE, Schmitt LC. Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am J Sports Med. 2015;43(11):27272737. PubMed doi:10.1177/0363546515602016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Schmitt LC, Paterno MV, Ford KR, Myer GD, Hewett TE. Strength asymmetry and landing mechanics at return to sport after anterior cruciate ligament reconstruction. Med Sci Sport Exerc. 2015;47(7):14261434. doi:10.1249/MSS.0000000000000560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    de Jong SN, van Caspel DR, van Haeff MJ, Saris DB. Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy. 2007;23(1):21.e121.e11. PubMed doi:10.1016/j.arthro.2006.08.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42(9):750759. PubMed doi:10.2519/jospt.2012.4194

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Harter RA, Osternig LR, Standifer LW. Isokinetic evaluation of quadriceps and hamstrings symmetry following anterior cruciate ligament reconstruction. Arch Phys Med Rehabil. 1990;71(7):465468. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Müller U, Krüger-Franke M, Schmidt M, Rosemeyer B. Predictive parameters for return to pre-injury level of sport 6 months following anterior cruciate ligament reconstruction surgery. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):36233631. PubMed doi:10.1007/s00167-014-3261-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Petschnig R, Baron R, Albrecht M. The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 1998;28(1):2331. PubMed doi:10.2519/jospt.1998.28.1.23

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Yong AG, Pearce S. A beginner’s guide to factor analysis: focusing on exploratory factor analysis. Tutor Quant Methods Psychol. 2013;9(2):7994. doi:10.20982/tqmp.09.2.p079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Surakka J, Romberg A, Ruutiainen J, Virtanen A, Aunola S, Mäentaka K. Assessment of muscle strength and motor fatigue with a knee dynamometer in subjects with multiple sclerosis: a new fatigue index. Clin Rehabil. 2004;18(6):652659. PubMed doi:10.1191/0269215504cr781oa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett WE Jr, Beutler AI. The landing error scoring system (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the JUMP-ACL study. Am J Sports Med. 2009;37(10):19962002. PubMed doi:10.1177/0363546509343200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kuenze CM, Foot N, Saliba SA, Hart JM. Drop-landing performance and knee-extension strength after anterior cruciate ligament reconstruction. J Athl Train. 2015;50(6):596602. PubMed doi:10.4085/1062-6050-50.2.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gustavsson A, Neeter C, Thomeé P, et al. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):778788. PubMed doi:10.1007/s00167-006-0045-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Greenberger HB, Paterno MV. Relationship of knee extensor strength and hopping test performance in the assessment of lower extremity function. J Orthop Sports Phys Ther. 1995;22(5):202206. PubMed doi:10.2519/jospt.1995.22.5.202

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Reinke EK, Spindler KP, Lorring D, et al. Hop tests correlate with IKDC and KOOS at minimum of 2 years after primary ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2011;19(11):18061816. PubMed doi:10.1007/s00167-011-1473-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kuenze CM, Blemker SS, Hart JM. Quadriceps function relates to muscle size following ACL reconstruction. J Orthop Res. 2016;34:16561662. PubMed doi:10.1002/jor.23166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Snyder-Mackler L, Binder-Macleod SA, Williams PR. Fatigability of human quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med Sci Sport Exer. 1993;25(7):783789. PubMed doi:10.1249/00005768-199307000-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    McHugh MP, Tyler TF, Nicholas SJ, Browne MG, Gleim GW. Electromyographic analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2001;31(1):2532. PubMed doi:10.2519/jospt.2001.31.1.25

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    McKeon PO, Hertel J. The dynamical-systems approach to studying athletic injury. Athl Ther Today. 2006;11(1):3133. doi:10.1123/att.11.1.31

  • 36.

    McKeon PO. Cultivating functional variability: the dynamical-systems approach to rehabilitation. Athl Ther Today. 2009;14(4):13. doi:10.1123/att.14.4.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Urbach D, Awiszus F. Impaired ability of voluntary quadriceps activation bilaterally interferes with function testing after knee injuries. A twitch interpolation study. Int J Sports Med. 2002;23(4):231236. PubMed doi:10.1055/s-2002-29074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Urbach D, Nebelung W, Becker R, Awiszus F. Effects of reconstruction of the anterior cruciate ligament on voluntary activation of quadriceps femoris a prospective twitch interpolation study. J Bone Joint Surg Br. 2001;83(8):11041110. PubMed doi:10.1302/0301-620X.83B8.11618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Urbach D, Nebelung W, Weiler HT, Awiszus F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med Sci Sport Exerc. 1999;31(12):16911696. PubMed doi:10.1097/00005768-199912000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Drechsler WI, Cramp MC, Scott OM. Changes in muscle strength and EMG median frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol. 2006;98(6):613623. PubMed doi:10.1007/s00421-006-0311-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1073 839 69
Full Text Views 60 22 0
PDF Downloads 45 27 0