Preferred Hip Strategy During Landing Reduces Knee Abduction Moment in Collegiate Female Soccer Players

in Journal of Sport Rehabilitation
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $74.00

1 year subscription

USD  $99.00

Student 2 year subscription

USD  $141.00

2 year subscription

USD  $185.00

Context: Hip-focused interventions are aimed to decrease frontal plane knee loading related to anterior cruciate ligament injuries. Whether a preferred hip landing strategy decreases frontal plane knee loading is unknown. Objective: To determine if a preferred hip landing strategy during a drop vertical jump (DVJ) is utilized during a single-leg landing (SLL) task and whether differences in frontal plane knee loading are consistent between a DVJ and an SLL task. Design: Descriptive laboratory study. Setting: Research laboratory. Participants: Twenty-three collegiate, female soccer players. Main Outcome Measures: Participants were dichotomized into a hip (HIP; n = 9) or knee/ankle (KA; n = 14) strategy group based on the percentage distribution of each lower extremity joint relative to the summated moment (% distribution) during the DVJ. Separate 1-way analysis of variances examined the differences in joint-specific % distribution and external knee abduction moment between the HIP and KA groups. Results: The HIP group had significantly greater % distribution of hip moment and less % distribution of knee moment compared with the KA group during the DVJ and SLL. External knee abduction moment was also significantly less in the HIP group compared with the KA group during the DVJ. Conclusions: Female soccer athletes who land with a preferred hip strategy during a DVJ also land with a preferred hip strategy during an SLL. The preferred hip strategy also resulted in less external knee abduction moments during the DVJ. Clinical Relevance: Targeting the neuromuscular control of the hip extensor may be useful in reducing risk of noncontact anterior cruciate ligament injuries.

Nguyen and Keith are with the Dept of Athletic Training, School of Health Sciences, High Point University, High Point, NC. Taylor and Ford are with the Dept of Physical Therapy, School of Health Sciences, High Point University, High Point, NC. Wimbish is with the Dept of Exercise Science, School of Health Sciences, High Point University, High Point, NC.

Nguyen (anguyen@highpoint.edu) is corresponding author.
  • 1.

    Mendiguchia J, Ford KR, Quatman CE, Alentorn-Geli E, Hewett TE. Sex differences in proximal control of the knee joint. Sports Med. 2011;41(7):541557. PubMed doi:10.2165/11589140-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech. 2003;18(7):662669. PubMed doi:10.1016/S0268-0033(03)00090-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Ford KR, Myer GD, Hewett TE. Longitudinal effects of maturation on lower extremity joint stiffness in adolescent athletes. Am J Sports Med. 2010;38(9):18291837. PubMed doi:10.1177/0363546510367425

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Shultz SJ, Nguyen AD, Leonard MD, Schmitz RJ. Thigh strength and activation as predictors of knee biomechanics during a drop jump task. Med Sci Sports Exerc. 2009;41(4):857866. PubMed doi:10.1249/MSS.0b013e3181e3b3f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sigward SM, Pollard CD, Powers CM. The influence of sex and maturation on landing biomechanics: implications for anterior cruciated ligament injury. Scand J Med Sci Sports. 2012;22(4):502509. PubMed doi:10.1111/j.1600-0838.2010.01254.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30(2):261267. PubMed doi:10.1177/03635465020300021901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Stearns KM, Keim RG, Powers CM. Influence of relative hip and knee extensor muscle strength on landing biomechanics. Med Sci Sports Exerc. 2013;45(5):935941. PubMed doi:10.1249/MSS.0b013e31827c0b94

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lawrence RK, Kernozek TW, Miller EJ, Torry MR, Reuteman P. Influences of hip external rotation strength on knee mechanics during single-leg drop landings in females. Clin Biomech. 2008;23:806813. PubMed doi:10.1016/j.clinbiomech.2008.02.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech. 2010;25(2):142146. PubMed doi:10.1016/j.clinbiomech.2009.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Myer GD, Chu DA, Brent JL, Hewett TE. Trunk and hip control neuromuscular training for the prevention of knee joint injury. Clin Sports Med. 2008;27(3):425448. PubMed doi:10.1016/j.csm.2008.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chaudhari AM, Andriacchi TP. The mechanical consequences of dynamic frontal plane limb alignment for non-contact ACL injury. J Biomech. 2006;39(2):330338. PubMed doi:10.1016/j.jbiomech.2004.11.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Olsen O, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball. Am J Sports Med. 2004;32(4):10021012. PubMed doi:10.1177/0363546503261724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Krosshaug T, Slauterbek JR, Engebretsen L, Bahr R. Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports. 2007;17:508519. PubMed doi:10.1111/j.1600-0838.2006.00558.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Koga H, Nakamae A, Yosuke S, et al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38:22182225. PubMed doi:10.1177/0363546510373570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ford KR, DiCesare CA, Myer GD, Hewett TE. Real-time biofeedback to target risk of anterior cruciate ligament injury: a technical report for injury prevention and rehabilitation. J Sport Rehabil. 2015 ; 13. PubMed doi:10.1123/jsr.2013-0138

    • Search Google Scholar
    • Export Citation
  • 17.

    de Leva P. Joint center longitudinal positions computed from a selected subset of Chandler’s data. J Biomech. 1996;29(9):12311233. PubMed doi:10.1016/0021-9290(96)00021-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Ford KR, Myer GD, Hewett TE. Valgus knee motion during landing in high school female and male basketball players. Med Sci Sports Exerc. 2003;35(10):17451750. PubMed doi:10.1249/01.MSS.0000089346.85744.D9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res. 2002;401:162169. doi:10.1097/00003086-200208000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Colby SM, Hintermeister RA, Torry MR, Steadman JR. Lower limb stability with ACL impairment. J Orthop Sports Phys Ther. 1999;29(8):444454. PubMed doi:10.2519/jospt.1999.29.8.444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ford KR, Myer GD, Hewett TE. Reliability of landing 3D motion analysis: implications for longitudinal analyses. Med Sci Sports Exerc. 2007;39(11):20212028. PubMed doi:10.1249/mss.0b013e318149332d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ford KR, Myer GD, Melson PG, Darnell SC, Brunner HI, Hewett TE. Land-jump performance in patients with Juvenile Idiopathic Arthritis (JIA): a comparison to matched controls. Int J Rheumatol. 2009;2009:15. PubMed doi:10.1155/2009/478526

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):24382444. PubMed doi:10.1016/j.jbiomech.2005.07.021

  • 24.

    McCaw ST, Gardner JK, Stafford LN, Torry MR. Filtering ground reaction force data affects the calculation and interpretation of joint kinetics and energetics during drop landings. J Appl Biomech. 2013;29(6):804809. PubMed doi:10.1123/jab.29.6.804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Winter DA. Biomechanics and Motor Control of Human Movement. 3rd ed. New York, NY: John Wiley & Sons, Inc; 2005.

  • 26.

    Zhang SN, Bates BT, Dufek JS. Contributions of lower extremity joints to energy dissipation during landings. Med Sci Sports Exerc. 2000;32(4):812819. PubMed doi:10.1097/00005768-200004000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc. 1992;24(1):108115. PubMed doi:10.1249/00005768-199201000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Yeow CH, Lee PV, Goh JC. An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Hum Mov Sci. 2011;30(3):624635. PubMed doi:10.1016/j.humov.2010.11.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stearns KM, Powers CM. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med. 2014;42(3):602609. PubMed doi:10.1177/0363546513518410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2):4251. PubMed doi:10.2519/jospt.2010.3337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Blackburn JT, Padua DA. Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity. J Athl Train. 2009;44(2):174179. PubMed doi:10.4085/1062-6050-44.2.174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Shimokochi Y, Ambegaonkar JP, Meyer EG, Lee SY, Shultz SJ. Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2012;21(4):888897. PubMed doi:10.1007/s00167-012-2011-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 209 193 22
Full Text Views 21 21 1
PDF Downloads 7 7 0